K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
RS
4
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HP
1
10 tháng 8 2018
Ta có :
3n + 2 + 3n + 1 + 2n + 3 + 2n + 2
= 3n . 32 + 3n . 3 + 2n . 23 + 2n . 22
= 3n (32 + 3) + 2n (23 + 22)
= 3n . 12 + 2n . 12
= 12 (3n . 2n)
Mà 12 ⋮ 6 ⇒ đpcm
M
0
\(3^{n+3}+3^{n+1}+2^{n+2}+2^{n+1}\)|
\(=3^n\cdot3^3+3^n\cdot3+2^n\cdot2^2+2^n\cdot2\)
\(=3^n\left(3^3+3\right)+2^n\left(2^2+2\right)\)
\(=3^n\cdot30+2^n\cdot6\)
Vì 30 chia hết cho 6 nên 3n . 30 cũng chia hết cho 6.
Vì 6 chia hết cho 6 nên 2n .6 cũng chia hết cho 6.
Vậy .....
=))
Ta có:
\(A=3^{n+3}+3^{n+1}+2^{n+2}+2^{n+1}\)
\(=3^{n+1}\cdot3^2+3^{n+1}+2^{n+1}\cdot2^1+2^{n+1}\)
\(=3^{n+1}\cdot\left(3^2+1\right)+2^{n+1}\cdot\left(2^1+1\right)\)
\(=3^{n+1}\cdot10+2^{n+1}\cdot3\)
\(=3^n\cdot3\cdot2\cdot5+2^n\cdot2\cdot3\)
\(=3^n\cdot6\cdot5+2^n\cdot6\)
\(=6\cdot\left(3^n\cdot5\cdot2^n\right)\Rightarrow⋮6\left(đpcm\right)\)