Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.3^{x-2}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}.6=162\)
\(\Rightarrow3^{x-1}=27=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
\(3\cdot3^{x-2}+5\cdot3^{x-1}=162\)
\(3^{x-1}+5\cdot3^{x-1}=162\)
\(3^{x-1}\left(5+1\right)=162\)
\(3^{x-1}\cdot6=162\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(x-1=3\)
\(x=4\)
a)Ta có:(9/25)n=(3/5)4=>(9/25)n=(9/25)2=>n=2
b)(2n-2)2=16=>2n-2=4 hoặc 2n-2= -4=>2n=6 hoặc 2n=-2=>không tìm được giá trị của n thỏa mãn
c)(1-n )3=216=>(1-n)3=63=>1-n=6=>n=-5
3x-1+5.3x-1=162
=>3x-1.6=162
=>3x-1=162:6
=>3x-1=27=33
=>x-1=3
=>x=4
a, 5n+5n+2=650
=>5n+5n.52=650
=>5n(1+25)=650
=>5n.26=650
=>5n=25
=>5n=52
=>n=2
Vậy n=2
Có 3^n+1-3^n=3^n.3-3^n=3^n(3-1)=3^n.2
Suy ra 3^n.2=162
3^n=162:2=81
3^n=3^4.Suy ra n = 4
a ) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
b ) \(3^{x-1}+5.3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}\left(1+5\right)=162\)
\(\Leftrightarrow3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\Leftrightarrow x=4\)
a) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x.1+5^x.5^2=650\)
\(\Rightarrow5^x.\left(1+5^2\right)=650\)
\(\Rightarrow5^x.\left(1+25\right)=650\)
\(\Rightarrow5^x.26=650\)
\(\Rightarrow5^x=650:26\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\left(TM\right).\)
Vậy \(x=2.\)
b) \(3^{x-1}+5.3^{x-1}=162\)
\(\Rightarrow1.3^{x-1}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}.\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}.6=162\)
\(\Rightarrow3^{x-1}=162:6\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=3+1\)
\(\Rightarrow x=4\left(TM\right).\)
Vậy \(x=4.\)
Chúc bạn học tốt!
a) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x\left(1+5^2\right)=650\)
\(\Leftrightarrow5^x=25=5^2\)
\(\Leftrightarrow x=2\)
b) \(3^{x-1}+5.3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}\left(1+5\right)=162\)
\(\Leftrightarrow3^{x-1}=27=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)
Ta có : \(3^{-1}.3^n+5.3^{n+1}=162\)
\(\Leftrightarrow3^{-1}.3^n+15.3^n=162\)
\(\Leftrightarrow3^n\left(3^{-1}+15\right)=162\)
\(\Leftrightarrow3^n\frac{46}{3}=162\)
\(\Leftrightarrow3^n=\frac{162.3}{46}=\frac{243}{23}\) (đề sai òi e ơi)
3n-1 + 5.3n-1 = 162
3n-1.6 = 162
3n-1 = 27 = 33
=> n-1 = 3
n = 4
3n - 1 + 5.3n - 1 = 162
=> 3n - 1(1 + 5) = 162
=> 3n - 1.6 = 162
=> 3n - 1 = 27
=> 3n - 1 = 33
=> n - 1 = 3
=> n = 2
vậy_