K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0

    *nếu x<1. ta có: A=x8 +x (1-x3)+ (1-x)>0  (từng số hạng >o)

   

28 tháng 4 2016

ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !

21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

31 tháng 3 2019

c) \(\left|2x-3\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)

\(TH:2x-3=4\)

\(\Leftrightarrow2x=4+3\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\frac{7}{2}\)

\(TH:2x-3=-4\)

\(\Leftrightarrow2x=-4+3\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{7}{2};\frac{-1}{2}\right\}\)

31 tháng 3 2019

e) \(\frac{x-1}{x-3}>1\)

\(ĐKXĐ:x\ne3\)

\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)

\(\Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\)

\(\Leftrightarrow1+\frac{2}{x-3}>1\)

\(\Leftrightarrow\frac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

a: (x-3)(x-2)<0

=>x-2>0 và x-3<0

=>2<x<3

b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)

=>x>=-3 hoặc x<=-4

c: \(\dfrac{x-1}{x-2}\ge0\)

nên \(\left[{}\begin{matrix}x-2>0\\x-1\le0\end{matrix}\right.\Leftrightarrow x\in(-\infty;1]\cup\left(2;+\infty\right)\)

d: \(\dfrac{x+3}{2-x}\ge0\)

\(\Leftrightarrow\dfrac{x+3}{x-2}\le0\)

hay \(x\in[-3;2)\)