K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại...
Đọc tiếp

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại M và M'. Gọi \(M_1\) là hình chiếu vuông góc của M trên mặt phẳng (P)

a) Chứng minh 5 điểm A, A', M, M', \(M_1\) cùng nằm trên mặt cầu (S). Xác định tâm O của (S). Tính bán kính của (S) theo \(a,\alpha\) và khoảng cách x giữa hai mặt phẳng (P), (Q) ?

b) Khi x thay đổi, tâm O mặt cầu (S) di động trên đường nào ? Chứng minh rằng khi (Q) thay đổi mặt cầu (S) luôn luôn đi qua một đường tròn cố định

1
20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

31 tháng 3 2017

a) y=x+3x+1y=x+3x+1 có tập xác định : R\{-1}

y′=−2(x+1)2<0,∀x≠−1y′=−2(x+1)2<0,∀x≠−1

Tiệm cận đứng: x = -1

Tiệm cận ngang: y = 1

Bảng biến thiên:

Đồ thị hàm số:

b) Xét phương trình có nghiệm là hoành độ giao điểm của (C) và đường thẳng (d): y = 2x + m

(1)

x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1

Δ = (m+1)2 – 4.2(m-3) = m2 – 6m + 25 = (m-3)2 + 16> 0, Δm, nên (1) luôn có hai nghiệm phân biệt khác -1.

Vậy (d) luôn cắt (C) tại hai điểm phân biệt M, N (hoành độ của M, N chính là nghiệm của (1)).

 

 

29 tháng 5 2017

TenAnh1 C = (-4.24, -6.16) C = (-4.24, -6.16) C = (-4.24, -6.16) D = (11.12, -6.16) D = (11.12, -6.16) D = (11.12, -6.16) E = (-4.28, -6.08) E = (-4.28, -6.08) E = (-4.28, -6.08) F = (11.08, -6.08) F = (11.08, -6.08) F = (11.08, -6.08)
Vậy \(Min_{MN}=2\sqrt{3}\) khi \(m=3\).

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

25 tháng 4 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hình tứ giác A’M’M M 1  là hình chữ nhật nên tâm O cũng là trung điểm của A’M. Do đó khi x thay đổi thì mặt phẳng (Q) thay đổi và điểm O luôn luôn thuộc đường thẳng d’ đi qua trung điểm I của đoạn AA’ và song song với đường thẳng  ∆ . Vì mặt cầu tâm O luôn luôn đi qua hai điểm cố định A, A’nên nó có tâm O di động trên đường thẳng d’. Do đó mặt cầu tâm O luôn luôn chứa đường tròn tâm I cố định có đường kính AA’ cố định và nằm trong mặt phẳng cố định vuông góc với đường thẳng d’.

31 tháng 3 2017

a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1

Tập xác định: D = R

y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)

Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R

⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R

⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1

b) Hàm số có một cực đại và một cực tiểu

⇔ phương trình y’= 0 có hai nghiệm phân biệt

⇔ (m-1)2 > 0 ⇔ m≠1

c) f’’(x) = 6x – 6m > 6x

⇔ -6m > 0 ⇔ m < 0



19 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì mặt phẳng (P) qua A và vuông góc với Δ′ nên AA’ thuộc (P). Vì M thuộc  ∆  mà d là hình chiếu vuông góc của  ∆  trên (P) nên M 1 thuộc d. Vì MA ⊥ AA′ ⇒  M 1 A  ⊥  AA′

Mặt khác  M 1 A  ⊥  M′A′ nên ta suy ra  M 1 A  ⊥  (AA′M′). Do đó  M 1 A  ⊥  M′A và điểm A thuộc mặt cầu đường kính M’ M 1

Ta có M′A′  ⊥  (P) nên M′A′  ⊥  A′ M 1 , ta suy ra điểm A’ cũng thuộc mặt cầu đường kính M’ M 1

Ta có (Q) // (P) nên ta suy ra

M M 1  ⊥ (Q) mà MM’ thuộc (Q), do đó  M 1 M  ⊥  MM′

Như vậy 5 điểm A, A’, M, M’,  M 1  cùng thuộc mặt cầu (S) có đường kính M’ M 1 . Tâm O của mặt cầu (S) là trung điểm của đoạn M’ M 1

Ta có M ' M 1 2 = M ' A ' 2 + A ' M 1 2  = M ' A ' 2 + A ' A 2 + AM 1 2 = x 2 + a 2 + x 2 cot 2 α vì M M 1  = x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bán kính r của mặt cầu (S) bằng (M′ M 1 )/2 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12