K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(3b^2\right)^2-b^3.\left(1-5b\right)\)

\(=9b^4-b^3+5b^4\)

\(=14b^4-b^3\)

a: \(B=\dfrac{3}{5}x^2+\dfrac{2}{5}x-0,5-1+\dfrac{2}{5}x-\dfrac{3}{5}x^2=-1.5\)

b: \(=1,7-12a^2-2+5a^2-7a+2.3+7a^2+7a\)

=2

c: \(=1-b^2-5b+3b^2+1+5b-2b^2=2\)

a: 3x=2y

nên x/2=y/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-y}{2-3}=\dfrac{1}{-1}=-1\)

Do đó: x=-2; y=-3

\(A=\left(-2\right)^3+12\cdot\left(-2\right)^2\cdot\left(-3\right)+48\cdot\left(-2\right)\cdot\left(-3\right)^2-64\cdot\left(-3\right)^3\)

\(=-8+12\cdot4\cdot\left(-3\right)-96\cdot9-64\cdot\left(-27\right)\)

\(=712\)

b: 6a=5b

nên a/5=b/6

Đặt a/5=b/6=k

=>a=5k; b=6k

\(B=\dfrac{2a-3b}{3b-2a}=-1\)

d: \(\left|x-2\right|+\left(y-1\right)^2=0\)

=>x-2=0 và y-1=0

=>x=2 và y=1

\(D=\left|2-2\right|+\dfrac{2-1}{2-1}=0+1=1\)

15 tháng 6 2020

Lm giúp tôi với :((

15 tháng 6 2020

Bài làm

a) 2a²x³ - ax³ - a⁴ - x³a² - ax³ - 2x⁴

= 2a²x³ - ax³ - a⁴ - a²x³ - ax³ - 2x⁴

= ( 2a²x³ - a²x³ ) - ( ax³ + ax³ ) - a⁴ - 2ax⁴

= a²x³ - 2ax³ - a⁴ - 2ax⁴

b) 3xx⁴ + 4xx³ - 5x²x³ - 5x²x²

= 3x⁵ + 4x⁴ - 5x⁵ - 5x⁴

= ( 3x⁵ - 5x⁵ ) + ( 4x⁴ - 5x⁴ )

= -2x⁵ - x⁴

c) 3a - 4b² - 0,8b . 4b² - 2ab . 3b + b . 3b² - 1

= 3a - 4b² - 3,2b³ - 6ab² + 3b³ - 1

= 3a - 4b² - 0,2b³ - 6ab² - 1

d) 5x.2y² - 5x.3xy - x²y + 6xy² 

= 10xy² - 15x²y - x²y + 6xy²

= ( 10xy² + 6xy² ) - ( 15x²y + x²y )

= 16xy² - 16x²y

31 tháng 8 2017

Bài 1:

a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)

7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)

=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)

=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)

b) Tương tự câu a

c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)

=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)

Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1

=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)

d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)

Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)

=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2

Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)

Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)

Bài 2:

Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)

Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi

=> chiều rộng = 18(m) => chiều dài = 27(m)

31 tháng 8 2017

thánh nhân xuất hiện đê

9 tháng 5 2016

\(8a^2b\left(-xy^2\right)^23b\left(-\frac{1}{2}x^3y\right)^3=\left(-\frac{1}{8}.8.3\right)a^2b^2x^{11}y5\)

19 tháng 10 2016

i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)

Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k= 792 => k3 = 8 => k = 2

=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)

19 tháng 10 2016

Bài g tương tự bài i

e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)

Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)

Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2

Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)

Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)

\(=12ab^2-3.2b^3-6ab^2+3b^3-1\)

\(=6ab^2-0.2b^3-1\)