Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai/ thiếu. Cho $a=0; b=1; c=2$ thì $a^3a^3+b^3b^3+c^3c^3=65$ còn $3abc=0$
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
a) Ta có: 3a+1<3b+1
\(\Leftrightarrow3a< 3b\)
hay a<b
Ta có : \(a-b=7\Rightarrow a=b+7\)
Thay \(a=b+7\) vào biểu thức B ta được :
\(B=\dfrac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\dfrac{3b-\left(7+b\right)}{2b-7}\)
\(=\dfrac{21+3b-b}{14+2b+7}+\dfrac{3b-7-b}{2b-7}\)
\(=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)
\(=1+1=3\)
Vậy \(B=2\)
a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)
\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)
\(=\dfrac{3a-1}{2}\)
\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)
b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)
\(=\dfrac{1}{b-3}\)
\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)
\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)