K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Đề sai/ thiếu. Cho $a=0; b=1; c=2$ thì $a^3a^3+b^3b^3+c^3c^3=65$ còn $3abc=0$

11 tháng 3 2023

Do `a > b> 0`

`=> 3a > 3b`

`=> -3a < -3b`

`=>  -3a +7< -3b+7`

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

a) Ta có: 3a+1<3b+1

\(\Leftrightarrow3a< 3b\)

hay a<b

 

29 tháng 3 2021

câu b nx bn ơi

12 tháng 7 2018

Ta có : \(a-b=7\Rightarrow a=b+7\)

Thay \(a=b+7\) vào biểu thức B ta được :

\(B=\dfrac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\dfrac{3b-\left(7+b\right)}{2b-7}\)

\(=\dfrac{21+3b-b}{14+2b+7}+\dfrac{3b-7-b}{2b-7}\)

\(=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)

\(=1+1=3\)

Vậy \(B=2\)

a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)

\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)

\(=\dfrac{3a-1}{2}\)

\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)

b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)

\(=\dfrac{1}{b-3}\)

\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)

\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)

2 tháng 1 2021

Rắc rối vậy

22 tháng 2 2019

\(P=\frac{3a+7+2a-b-7}{3a+7}-\frac{2b-7+b-2a+7}{2b-7}\)

mà 2a-b=7 hay b-2a=-7 nên ta có

\(P=1+\frac{7-7}{3a+7}-1-\frac{-7+7}{2b-7}=1+0-1-0=0\)