Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)
<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019
<=> p = 1/3 - 1/2019
<=> p = 224/673
\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{112}{673}\)
5/14x7/13x26/25
Bạn để ý rút gọn 14 cho 7 như sau
5/2x1/13x26/25
=5/26x26/25
Rút gọn 26 với 26,ta đc 5/25=1/5
\(\frac{5}{14}\times\frac{7}{13}\times\frac{26}{25}\)\(=\frac{5\times7\times13\times2}{7\times2\times13\times5\times5}\)\(=\frac{1}{5}\)
a,\(\frac{31}{17}+\frac{5}{13}+\frac{8}{13}-\frac{14}{17}=\left(\frac{31}{17}-\frac{14}{17}\right)+\left(\frac{5}{13}+\frac{8}{13}\right)=1+1=2\) b,\(\frac{5}{7}.\frac{22}{11}+\frac{5}{7}.\frac{9}{11}+\frac{5}{7}=\frac{5}{7}.\left(\frac{22}{11}+\frac{9}{11}+1\right)=\frac{5}{7}.4=\frac{20}{7}\)
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
\(\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)
\(\Rightarrow c=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{97}-\frac{1}{99}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow C=\frac{32}{99}\)
C = 2/3x5 + 2/5x7 + 2/7x9 + ... + 2/97x99
C = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99
C = 1/3 - 1/99
C = 32/99
A = 3/1.3 + 3/3.5 + 3/5.7 + 3/7.9 + ... + 3/97.99
A = 3/2 . ( 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9 + .... + 2/97 - 2/99
A = 3/2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99 )
A = 3/2 . ( 1 - 1/99 )
A = 3/2 . 98/99
A = 49/33
b) dãy số không có quy luật==> bạn xem lại đề
c) \(C=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{50\times51}-\frac{1}{51\times52}\right)\)
\(C=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{51\times52}\right)=\frac{1}{2}\times\frac{2650}{5408}=\frac{1325}{5408}\)
\(\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{129\cdot131}\)
\(=3\left(\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+....+\frac{1}{129\cdot131}\right)\)
\(=\frac{3}{2}\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{129\cdot131}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{129}-\frac{1}{131}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{131}\right)\)
\(=\frac{3}{2}\cdot\frac{126}{655}\)
\(=\frac{378}{1310}=\frac{189}{655}\)
\(\frac{3}{7}.\frac{9}{26}-\frac{1}{14}.\frac{1}{13}\)
\(=6.\frac{1}{14}.\frac{1}{13}.\frac{9}{2}-\frac{1}{14}.\frac{1}{13}\)
\(=\frac{1}{14}.\frac{1}{13}.\left(\frac{6.9}{2}-1\right)\)
\(=\frac{1}{182}.26\)
\(=\frac{1}{7}\)
3/7.9/26-1/14.1/13=3.9/7.26-1/14.1/13
=27/182-1/14.1/13
=27/182-1.1/14.13
=27/182-1/182
=26/182=1/7