K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

N.(3,75+4,92)=867

N.8,67=867

=>N=100

 

27 tháng 9 2015

N )3,75+4,92) = 867

n. 8,67 =867

N =100

Vậy N =100

7 tháng 2 2021

a,Ta có:

 1-n/n+1=1/n+1(1)

1-n+2/n+3=1/n+3(2)

Từ (1);(2)

Suy ra 1/n+1>1/n+3 (n thuộc N)

Suy ra 1-1/n+1<1-1/n+3

Khi đó n/n+1<n+2/n+3

4 tháng 4 2016

A=20^20
 

4 tháng 4 2016

n * n = 400 => \(n=\sqrt{400}\Rightarrow n=20\) và 20 thừa số 20 nên A = 2020

2 tháng 3 2018

\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)

2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)

3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)

Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))

2 tháng 3 2018

chị thương ơi gửi em câu 6,7

3 tháng 3 2017

c

20 tháng 2 2016

a,   <                b, >                 c, không biết

em mới hoc lớp 4 thôi

20 tháng 7 2017

\(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3}{3}\)

\(=\frac{1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]}{3}\)

\(=\frac{1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)}{3}\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}=\frac{n\left(n+1\right)\left(2n+4\right)}{6}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{3n\left(n+1\right)}{6}\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{n\left(n+1\right)}{2}\)

Vậy chọn C

11 tháng 12 2021

c c c c c cccccccc c c c cccc cccccc ccccccccc ccccccccccccccccccc cc 

26 tháng 11 2017

a, Gọi \(d=ƯCLN\left(n,n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n,n+1\right)=1\)

b, Ta có :

\(ƯCLN\left(n,n+1\right)=1\left(cmt\right)\)

\(\Leftrightarrow n+1;n\) nguyên tố cùng nhau

\(\Leftrightarrow BCNN\left(n+1;n\right)=\left(n+1\right)n=n^2+n\)

23 tháng 1 2018

a, Gọi d=ƯCLN(n,n+1)d=ƯCLN(n,n+1)

=> \(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)

⇔{n⋮dn+1⋮d

⇔1⋮d⇔1⋮d

⇔d=1⇔d=1

⇔ƯCLN(n,n+1)=1⇔ƯCLN(n,n+1)=1

b, Ta có :

ƯCLN(n,n+1)=1(cmt)ƯCLN(n,n+1)=1(cmt)

⇔n+1;n⇔n+1;n nguyên tố cùng nhau

⇔BCNN(n+1;n)=(n+1)n=n^2+n

25 tháng 11 2014

ta xét giêng : nếu n + 15 là snt thì ( 1 + 15 ) chia 3 sẽ dư 1 => n + 15 - 4 = n + 11 sẽ chia hết cho 3

                                                      ( 1 + 15 ) chia 3       dư 2 => n + 15 - 2 = n + 13 sẽ chia hết cho 3

vậy không có số n thỏa mãn bạn ạ !

25 tháng 11 2014

xin lỗi ( n + 15 ) chứ ko phải ( 1 + 15 ) mình nhầm