Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
1,a)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{7}=\dfrac{14}{7}=2\)
\(=>\left\{{}\begin{matrix}\dfrac{x}{4}=2\\\dfrac{y}{3}=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)
1,b)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(=>\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
`Answer:`
`\frac{x-1}{34}+\frac{x-2}{34}=\frac{x-3}{32}+\frac{x-4}{31}`
`<=>\frac{x-1}{34}-1+\frac{x-2}{33}-1=\frac{x-3}{32}-1+\frac{x-4}{31}-1`
`<=>\frac{x-35}{34}+\frac{x-35}{33}=\frac{x-35}{32}+\frac{x-35}{31}`
`<=>(x-35)(\frac{1}{34}+\frac{1}{33}-\frac{1}{32}-\frac{1}{31})=0`
`<=>x-35=0`
`<=>x=35`
mình chỉ làm 1 phần thui nhé,lười lắm
x/2=y/3=>3x=2y
=>x=15:(3-2).2=30
y=30+15 =45
1. \(\dfrac{x}{19}=\dfrac{y}{21};2x-y=34\)
Có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
=> \(\dfrac{2x}{38}=\dfrac{y}{21}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=> \(\dfrac{x}{19}=2=>x=2.19=38\)
=> \(\dfrac{y}{21}=2=>y=2.21=42\)
Vậy x= 38 ; y= 42
2. \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\);\(2x+3y-z=186\)
Có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
=> \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=3=>x=3.15=45\)
=>\(\dfrac{y}{20}=3=>y=3.20=60\)
=> \(\dfrac{z}{28}=3=>z=3.28=84\)
Vậy x=45;y=60;z=84
1) \(\dfrac{x}{19}=\dfrac{y}{21}\) và 2x -y =34
Từ \(\dfrac{x}{19}=\dfrac{y}{21}=>\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=>\(\dfrac{2x}{38}=2=>2x=2.38=>2x=76=>x=76:2=>x=38\)
=>\(\dfrac{y}{21}=2=>y=2.21=>y=42\)
Vậy x=38; y=42
2)\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)và 2x+3y-z=186
Từ \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=>\(\dfrac{2x}{30}=3=>2x=3.30=>2x=90=>x=90:2=>x=45\)
=>\(\dfrac{3y}{60}=3=>3y=3.60=>3y=180=>y=180:3=>y=60\)
=>\(\dfrac{z}{28}=3=>z=3.28=>z=84\)
Vậy x=45; y=60; z=84
3)\(\dfrac{x}{3}=\dfrac{y}{4}\) và\(\dfrac{y}{5}=\dfrac{z}{7}\)và 2x+3y-z=372
Từ\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}=>\dfrac{y}{20}=\dfrac{z}{28}\)
=>\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)
=>\(\dfrac{2x}{30}=6=>2x=6.30=>2x=180=>x=180:2=>x=90\)
=>\(\dfrac{3y}{60}=6=>3y=6.60=>3y=360=>y=360:3=>y=120\)
=>\(\dfrac{z}{28}=6=>z=6.28=>z=148\)
Vậy x=90; y=120; z=148
\(\left(\frac{3}{4}\right)^x=\frac{2^8}{3^4}\Leftrightarrow\frac{3^x}{4^x}=\frac{2^8}{3^4}\)
\(\Leftrightarrow3^x.3^4=2^8.4^x\Leftrightarrow3^{x+4}=\left(2^2\right)^4.4^x\)
\(\Leftrightarrow3^{x+4}=4^{4+x}\Leftrightarrow3^{x+4}-4^{x+4}=0\)xD