Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
TL
S= ( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3.S=3.( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3S=3+3^2+3^3+....+3^10
3S-S=3+3^2+3^3+....+3^10-(1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
2S=3^10-1
S=3^10-1/2
HỌC TỐT NHÉ
a) 1 + 3 + 5 + ... + 13
= (13 + 1).[(13 - 1) : 2 + 1] : 2
= 14 . 7 : 2
= 49
= 7²
b) 3² + 4² + 12²
= 9 + 16 + 144
= 169
= 13²
\(\frac{-5}{6}\)\(+\)\(\frac{4}{9}\)\(\times\)\(\left(\frac{5}{4}-\frac{2}{3}\right)\)\(\times\)\(\left(-3\right)^2\)\(+\)\(\frac{5}{9}\)\(\times\)\(30\%\)
\(=\)\(\frac{-5}{6}\)\(+\)\(\frac{4}{9}\)\(\times\)\(\frac{7}{12}\)\(\times\)\(9\)\(+\)\(\frac{5}{9}\)\(\times\)\(\frac{3}{10}\)
\(=\)\(\frac{-5}{6}\)\(+\)\(\frac{7}{3}\)\(+\)\(\frac{5}{9}\)\(\times\)\(\frac{3}{10}\)
\(=\)\(\frac{-5}{6}\)\(+\)\(\frac{7}{3}\)\(+\)\(\frac{1}{6}\)
\(=\)\(\frac{-5}{6}\)\(+\)\(\frac{1}{6}\)\(+\)\(\frac{7}{3}\)
\(=\)\(\frac{-2}{3}\)\(+\)\(\frac{7}{3}\)
\(=\)\(\frac{5}{3}\)
\(5^x-2-3^2=2^4-\left(2^8x2^4-2^{10}x2^2\right)\)
\(5^x-2-3^2=2^4-\left(2^{8+4}-2^{10+2}\right)\)
\(5^x-2-3^2=2^4-\left(2^{12}-2^{12}\right)\)
\(5^x-2-3^2=2^4-0\)
\(5^x-2-3^2=2^4\)
\(5^x-2-9=16\)
\(5^x-2=16+9\)
\(5^x-2=25\)
\(5^x=25+2\)
\(5^x=27\)
Bởi vì 27 không phân tích được 1 số có số mũ là 2
\(\Rightarrow\) Không tồn tại x
\(5^{x-2}-9=16-\left(256.16-1024.4\right)\)
\(\Rightarrow5^{x-2}-9=16-\left(4096-4096\right)\)
\(\Rightarrow5^{x-2}-9=16-0\)
\(\Rightarrow5^{x-2}-9=16\)
\(\Rightarrow5^{x-2}=25\)
\(\Rightarrow x-2=25:5\)
\(\Rightarrow x-2=3\)
\(\Rightarrow x=5\)
-3x+(-9)+5x-5=-10
(-3x+5x)+(-9-5)=-10
-2x+(-14)=-10
-2x=-10-(-14)
-2x=24
x=24:(-2)
x=-12. chúc bạn học tối nha
\(\dfrac{3}{4}.\left(\dfrac{2}{3}-\dfrac{1}{5}:\dfrac{3}{5}\right)\\ =\dfrac{3}{4}.\left(\dfrac{2}{3}-\dfrac{1}{3}\right)\\ =\dfrac{3}{4}.\dfrac{1}{3}=\dfrac{1}{4}\)