K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{#ID07 - DNfil}\)

`A = -(x + 1)^2 + 5`

Ta có: `(x + 1)^2 \ge 0` `AA` `x`

`=> -(x + 1)^2 \le 0` `AA` `x`

`=> -(x + 1)^2 + 5 \le 5` `AA` `x`

Vậy, GTLN của A là `5` khi `(x + 1)^2 = 0 => x + 1 = 0 => x = -1`

________

2.

`2x - 0,7 = 1,3`

`=> 2x = 1,3 + 0,7`

`=> 2x = 2`

`=> x = 1`

Vậy, `x = 1`

__

`x - \sqrt{25} = (2/5 - 6/5)`

`=> x - \sqrt{25} = -3/5`

`=> x = -3/5 + \sqrt{25}`

`=> x = -3/5 + 5`

`=> x = 22/5`

Vậy, `x = 22/5`

__

`3/4 + 1/4 \div x = 2/5`

`=> 1/4 \div x = 2/5 - 3/4`

`=> 1/4 \div x = -7/20`

`=> x = 1/4 \div (-7/20)`

`=> x = -5/7`

Vậy, `x = -5/7.`

\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)

    \(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)

22 tháng 8 2023

gg

 

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

10 tháng 8 2021

bạn trả lời hết được không

9 tháng 12 2019

1) 22x + 1 = 32

=> 22x + 1 = 25

=> 2x + 1 = 5

=> 2x = 5 - 1

=> 2x = 4

=> x = 2

(2) 3.x3 - 100 = 275

=> 3x3 = 275 + 100

=> 3x3 = 375

=> x3 = 375 : 3

=> x3 = 125

=> x3 = 53

=> x = 5

(4) (x - 1)3 - 25 = 72

=> (x - 1)3 = 49 + 32

=> (x - 1)3 = 81

(xem lại đề)

5) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-4}{-2}=2\)

=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.5=10\end{cases}}\)

Vậy ...

6) Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

       \(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{15}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=\frac{-49}{37}\)

=> \(\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}}\) => \(\hept{\begin{cases}x=-\frac{49}{37}\cdot10=\frac{-490}{37}\\y=-\frac{49}{37}\cdot15=-\frac{735}{37}\\z=-\frac{49}{37}\cdot12=-\frac{588}{37}\end{cases}}\)

Vậy ...

mk lm bài mà mk cho là ''khó'' nhất thôi nha 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và \(x+y+z=-49\)

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

ADTC dãy tỉ số bằng nhau ta có 

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=-\frac{49}{37}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{49}{37}.10=-\frac{490}{37}\\y=-\frac{49}{37}.15=-\frac{735}{37}\\z=-\frac{49}{37}.12=-\frac{588}{37}\end{cases}}}\)

1 tháng 7 2023

\(2x^2y^3+5y^2x^3+\left(-\dfrac{1}{2}x^3y^2\right)+\left(-\dfrac{1}{2}x^2y^3\right)\\ =\left[2x^2y^3+\left(-\dfrac{1}{2}x^2y^3\right)\right]+\left[5x^3y^2+\left(-\dfrac{1}{2}x^3y^2\right)\right]\\ =\dfrac{3}{2}x^2y^3+\dfrac{9}{2}x^3y^2\)

28 tháng 2 2022

Thay x=-1, y=-1 vào A ta có:
\(A=\dfrac{2}{3}x^2y^3-\dfrac{5}{3}x^2y^3+\dfrac{7}{2}x^2y^3+5\\ =\dfrac{5}{2}x^2y^3+5\\ =\dfrac{5}{2}.\left(-1\right)^2.\left(-1\right)^3+5\\ =\dfrac{5}{2}.1.\left(-1\right)+5\\ =\dfrac{-5}{2}+5\\ =\dfrac{5}{2}\)

9 tháng 12 2019

(1)\(2^2.x+1=32\)

4.x = 32-1

4.x=31

x=31:4

x= 7,75

9 tháng 12 2019

(4)\(\left(x-1\right)^3-2^5=7^2\)

\(\left(x-1\right)-32=49\)

\(\left(x-1\right)=49-32\)

\(x-1=17\)

x=17+1

x=18

20 tháng 7 2023

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)