K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

19 tháng 4 2020

Câu 2 bằng trừ 3

19 tháng 4 2020

Câu 1 thay 3x =4y vào tính

6 tháng 6 2020

câu c mình không chắc là do đề hay là do mình chưa từng gặp dạng này

24 tháng 12 2019

Đề sai không bạn? Phạm Vân Trường

24 tháng 12 2019

ko sai bạn

24 tháng 5 2020

Ta có: \(\left(x-3\right)^2\ge0;\left(y-1\right)^2\ge0\)

=> \(B=\left(x-3\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra <=> x - 3 = 0 và y - 1 = 0 <=> x = 3 và y = 1 

Vậy GTNN của B = 2020 đạt tại x = 3 và y = 1.

24 tháng 5 2020

\(B=\left(x-3\right)^2+\left(y-1\right)^2+2020\)

Ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-3\right)^2+\left(y-1\right)^2+2020\ge2020\)

=> B\(\ge\)2020

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Vậy GTNN của B=2020 đạt được khi x=3 và y=1

2 tháng 10 2020

đéo biết làm

25 tháng 12 2020

\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)

\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)