Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)\)
\(=\left(2x+y\right)^2:\left(2x+y\right)\)
\(=2x+y\)
b ) \(\left(27x^3+1\right):\left(3x+1\right)\)
\(=\left(3x+1\right)\left(9x^2-3x+1\right):\left(3x+1\right)\)
\(=9x^2-3x+1\)
c ) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)\)
\(=\left(x-3y\right)^2:\left(3y-x\right)\)
\(=\left(3y-x\right)^2:\left(3y-x\right)\)
\(=3y-x\)
d ) \(\left(8x^3-1\right):\left(4x^2+2x+1\right)\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right):\left(4x^2+2x+1\right)\)
\(=2x-1\)
:D
\(a,=\left(x-2\right)^2\\ b,=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\\ c,=\left(1-2x\right)\left(1+2x+4x^2\right)\\ d,=\left(x+1\right)^3\\ e,Sửa:\left(x+y\right)^2-9x^2=\left(x+y-3x\right)\left(x+y+3x\right)\\ =\left(y-2x\right)\left(4x+y\right)\\ f,=\left(x+3\right)^2\\ g,=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\\ h,=8\left(x^3-\dfrac{1}{64}\right)=8\left(x-\dfrac{1}{4}\right)\left(x^2+\dfrac{1}{4}x+\dfrac{1}{16}\right)\)
a) \(\left(x-2\right)^2\)
b) \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
c) \(\left(1-2x\right)\left(1+2x+4x^2\right)\)
d) \(\left(x+1\right)^3\)
e) \(\left(x+y-3\sqrt{x}\right)\left(x+y+3\sqrt{x}\right)\)
f) \(\left(x+3\right)^2\)
g) \(-\left(x-5\right)^2\)
h) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
a.
\(\Leftrightarrow\left(3x-1\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow3x-1=-\dfrac{1}{2}\)
\(\Leftrightarrow3x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{6}\)
b.
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-1-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\\end{matrix}\right.\)
c.
\(\Leftrightarrow3x\left(5x-2\right)-2\left(5x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
a) \(\dfrac{1}{4}a^2-2a+4=\left(\dfrac{1}{2}a-2\right)^2\)
b) \(4y^2-9x^2=\left(-3x+2y\right)\left(3x+2y\right)\)
c) \(8x^3+8a^3=\left(2x+2a\right)\left(4x^2-4xa+4a^2\right)\)
\(a,=8\left(x^3-125\right)=8\left(x-5\right)\left(x^2+10x+25\right)\\ b,=\left(0,1+4x\right)\left(0,01-0,4x+16x^2\right)\\ d,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ c,=\left(\dfrac{1}{5}y+x\right)\left(\dfrac{1}{25}y^2-\dfrac{1}{5}xy+x^2\right)\)
a, 8x3- 1000 = (2x)3 - 103 = (2x -10). (4x2 + 20x +100)
b,\(0,001+64x^3=\left(\dfrac{1}{10}\right)^3+\left(4x\right)^3=\left(\dfrac{1}{10}+4x\right).\left(\dfrac{1}{100}-\dfrac{2}{5}x+16x^2\right)\)
c, \(\dfrac{1}{125}y^3+x^3=\left(\dfrac{1}{5}y\right)^3+x^3=\left(\dfrac{1}{5}y+x\right).\left(\dfrac{1}{25}y^2-\dfrac{1}{5}yx+x^2\right)\)
\(d,27x^3-\dfrac{1}{8}y^3=\left(3x\right)^3-\left(\dfrac{1}{2}y\right)^3=\left(3x-\dfrac{1}{2}y\right).\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\)
a: A=(2x-1)^3
Khi x=5,5 thì A=(2*5,5-1)^3=10^3=1000
b: B=27x^3+54x^2+36x+7
=(3x)^3+3*(3x)^2*2+3*3x*2^2+2^3-1
=(3x+2)^3-1
=(-8+2)^3-1
=(-6)^3-1=-217
a,x3+3x2+3x+1
b,x2+6x+9
c,-x3+9x2-27x+27
d,x2+4x+4
k,10x-25-x2
f,(x+y)2-9x2
g,8x3+42x2y+16xy2+6xy+y3
a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)
b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)
c) \(-x^3+9x^2-27x+27\)
\(=-\left(x^3-9x^2+27x-27\right)\)
\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)
d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)
k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)
f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)
\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
a, \(x^2+y^2-2x+6y-30\)
\(=x^2-2x+1+y^2+6y+9-40\)
\(=\left(x-1\right)^2+\left(y+3\right)^2-40\ge-40\)
\(min=-40\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
a)x^2+y^2-2x+6y-30=(x-1)^2+(y+3)^2-40\(\ge\) -40
dấu = xảy ra khi x=1,y=-3
\(a,\left(3x+y\right)\left(9x^2-3xy+y^2\right)=27x^3+y^3\)
\(b,\left(2x-5\right)\left(4x^2+10x+25\right)=8x^3-125\)