Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2^2+2^3+2^4+2^5 \right).\left(3^2+3^3+3^4\right)\left(2^4-4^2\right)\)
\(=\left(2^2+2^3+2^4+2^5\right).\left(3^2+3^3+3^4\right).\left(16-16\right)\)
\(=0\)
2\(^1\)=2
4\(^2\)= 16
8 = 8
10\(^3\)= 1000
3 = 3
5\(^2\)= 25
7\(^2\)= 49
9\(^2\)= 81
xin thank
học tốt
a) \(2^3=2.2.2=8\)
\(2^4=2.8=16\)
\(2^5=2.16=32\)
\(2^6=2.32=64\)
\(2^7=2.64=128\)
\(2^8=2.128=256\)
\(2^9=2.256=512\)
\(2^{10}=2.512=1024\)
b) \(4^2=4.4=16\)
\(4^3=16.4=64\)
\(4^4=64.4=256\)
Còn lại tương tự
a) \(2^{3+4+5+6+7+8+9+10}=2^{52}\)
b) \(3^{14}\)\(=4782969\)
c) \(4^9\)\(=262144\)
d) \(5^9\)\(=1953125\)
e) \(6^9\)\(=10077696\)
K mk nha, mk nhanh nha
a, \(\dfrac{-7}{9}.2\dfrac{3}{4}\)
= \(\dfrac{-7}{9}.\dfrac{11}{4}\)
= \(\dfrac{-77}{36}\)
b, \(\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{-2}{5}\)
= \(\dfrac{2}{3}+\dfrac{-2}{15}\)
= \(\dfrac{10}{15}+\dfrac{-2}{15}\)
= \(\dfrac{-8}{15}\)
c , \(\dfrac{2}{3}-4\left(\dfrac{1}{2}+\dfrac{3}{4}\right)\)
= \(\dfrac{2}{3}-4.\dfrac{5}{4}\)
= \(\dfrac{2}{3}-5\)
= \(\dfrac{-13}{3}\)
d, \(\left(\dfrac{1}{-3}+\dfrac{5}{6}\right).11-7\)
= \(\dfrac{1}{2}\) . 11 - 7
= \(\dfrac{11}{2}-\dfrac{14}{2}\)
= \(\dfrac{-3}{2}\)
e, \(\dfrac{3}{4}.15\dfrac{1}{3}-\dfrac{3}{4}.43\dfrac{1}{3}\)
= \(\dfrac{3}{4}.\left(15\dfrac{1}{3}-43\dfrac{1}{3}\right)\)
= \(\dfrac{3}{4}.-28\)
= \(-21\)
Bài 1
a)\(\left(-\dfrac{2}{3}\right).\dfrac{3}{11}-\left(\dfrac{4}{3}\right)^2.\dfrac{3}{11}\)
\(=\dfrac{3}{11}.\left[\left(-\dfrac{2}{3}\right)-\left(\dfrac{4}{3}\right)^2\right]\)
\(=\dfrac{3}{11}.\left[\left(-\dfrac{2}{3}\right)-\dfrac{4}{3}.\dfrac{4}{3}\right]\)
\(=\dfrac{3}{11}.\left[\left(-2\right).\dfrac{4}{3}\right]\)
\(=\dfrac{3}{11}.\left(-\dfrac{8}{3}\right)\)
\(=-\dfrac{24}{33}\)
a) A = 20 + 21 + 22 + .... + 22010
2A = 2(20 + 21 + 22 + .... + 22010)
2A = 21 + 22 + 23 + .... + 22011
A = (21 + 22 + 23 + .... + 22011) - (20 + 21 + 22 + .... + 22010)
A = 22011 - 20
A = 22011 - 1
b) B = 1 + 3 + 32 + .... + 3100
3B = 3(1 + 3 + 32 + .... + 3100)
3B = 3 + 32 + 33 + .... + 3101
2B = (3 + 32 + 33 + .... + 3101) - (1 + 3 + 32 + .... + 3100)
2B = 3101 - 1
B = (3101 - 1) : 2
c) C = 4 + 42 + 43 + .... + 4n
4C = 4(4 + 42 + 43 + .... + 4n)
4C = 42 + 43 + 44 .... + 4n + 1
3C = (42 + 43 + 44 .... + 4n + 1) - (4 + 42 + 43 + .... + 4n)
3C = 4n + 1 - 4
C = (4n + 1 - 4) : 3
d) D = 1 + 5 + 52 + .... + 52000
5D = 5(1 + 5 + 52 + .... + 52000)
5D = 5 + 52 + 53 + .... + 52001
4D = (5 + 52 + 53 + .... + 52001) - (1 + 5 + 52 + .... + 52000)
4D = 52001 - 1
4D = (52001 - 1) : 4
2: \(=234+29-80+52^3=140791\)
3: \(=45\cdot\left(3250-225\right)=45\cdot3025=136125\)
4: \(=\left[\left(192-3\right):3\right]^2=63^2=3969\)