Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 14 + x chia hết cho x + 3
vì 3 là số lẻ và 4 là số chẵn nên x phải là chẵn vì lẻ ko chia hết cho chẵn (14 + x) là lẻ và (x + 3) là chẵn
ta có : P = {x E N* | x chia hết cho 2} (x khác 0 vì 14 không chia hết cho 3)
nhưng vì 14 - 3 = 11 mà 11 là số lẻ nên phép tính đó là sai
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
a/
\(\left(7^2+7^3\right)+\left(7^4+7^5\right)=7^2\left(1+7\right)+7^4\left(1+7\right)=8\left(7^2+7^4\right)⋮2\)
\(\left(7^2+7^4\right)+\left(7^3+7^5\right)=7^2\left(1+7^2\right)+7^3\left(1+7^2\right)=50\left(7^2+7^3\right)⋮5\)
\(7\left(7+7^2+7^3+7^4\right)⋮7\)
b/
\(19^{2005}=19.19^{2004}\)
\(19^{2004}\) kết quả có chữ số hàng đơn vị là 1 \(\Rightarrow19.19^{2004}\) kết quả có chữ số hàng đơn vị là 9
\(11^{2004}\) kết quả có chữ số hàng đơn vị là 1
\(\Rightarrow19^{2005}+11^{2004}\) kết quả có chữ số hàng đơn vị là 0 => chia hết cho 10
B=1+4+4^2+4^3+......+4^100
4B=4+4^2+4^3+4^4+........+4^101
4B - B = 4^101-1
3B=4^101-1
B=(4^101-1):3
\(\frac{31}{100}.x=372\Leftrightarrow x=372:\frac{31}{100}=1200\)
HT