Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^2 + 4y^2 + 6x - 12y + 18 = 0
<=>x2+6x+9+4y2-12y+9=0
<=>(x+3)2+(2y-3)2=0
<=>x+3=0 và 2y-3=0
<=>x=-3 và y=3/2
b) 5x^2 +9y^2 - 12xy - 6x +9 = 0
<=>x2-6x+9+4x2-12xy+9y2=0
<=>(x-3)2+(2x-3y)2=0
<=>x-3=0 và 2x-3y=0
<=>x=3 và 2.3-3y=0
<=>x=3 và y=2
\(x^3-6x^2y+12xy^2-8y^3=-8\)
\(\Leftrightarrow\left(x-2y\right)^3=-8\)
=>x-2y=-2
\(3x^2-12xy+12y^2\)
\(=3\left(x^2-4xy+4y^2\right)\)
\(=3\left(x-2y\right)^2=12\)
Ta có: 3x^2-12xy+12y^2=3(x-2y)^2. Lại có x^3-6x^2y+12xy^2-8y^3=-8\(\Rightarrow\)(x-2y)^3=-8\(\Rightarrow\)x-2y=-2. Thay vào biểu thức ta được biểu thức bằng 12. Học tốt!
\(x^3-6x^2y+12xy^2-8y^3=-8\Leftrightarrow\left(x-2y\right)^3=-8\Leftrightarrow x-2y=-2\)
\(3x^2-12xy+12y^2=3\left(x^2-4xy+4y^2\right)=3\left(x-2y\right)^2=3.\left(-2\right)^2=12\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
a: =(2x-3y)^2-4(2x-3y)
=(2x-3y)(2x-3y-4)
b: =3x^2+21x-x-7
=(x+7)(3x-1)
c: =(3x-1)^4+2(3x-1)^2+1
=[(3x-1)^2+1]^2
d: =2x^3-2x^2-x^2+x+x-1
=(x-1)(2x^2-x+1)
\(3x^2-12xy+12y^2-6x+12y\)
\(=3\left(x^2-4xy+4y^2-2x+4y\right)\)
\(=3\left[\left(x-2y\right)^2-2\left(x-2y\right)\right]\)
\(=3\left(x-2y\right)\left(x-2y-2\right)\)