Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
I , tìm x :
a, \(\left|x\right|=1,21\)
Ta có : \(\left|x\right|=\left|1,21\right|\rightarrow\left|x\right|=\pm1,21\)
b, \(\dfrac{11}{12}-\left(\dfrac{2}{5}-x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}-x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}-x=\dfrac{1}{4}\) => \(x=\dfrac{2}{5}-\dfrac{1}{4}\)
=> \(x=\dfrac{3}{20}\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}\div x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}\div x=\dfrac{-7}{20}\) => \(x=\dfrac{1}{4}\div\dfrac{-7}{20}\)
=> \(x=\dfrac{-5}{7}\)
d,\(3^x=81\)
Ta có 81= \(3^4\)
Vì : \(3^x=3^4\Rightarrow x=4\)
e,\(\dfrac{1}{2}.\left|x\right|-\dfrac{5}{2}=\dfrac{8}{3}\)
\(\left|x\right|-\dfrac{5}{6}=\dfrac{8}{3}:\dfrac{1}{2}\)
=> \(\left|x\right|-\dfrac{5}{2}=\dfrac{16}{3}\) => \(\left|x\right|=\dfrac{16}{3}+\dfrac{5}{2}\)
=> \(\left|x\right|=\dfrac{47}{6}\)
Vì \(\left|x\right|=\left|\dfrac{47}{6}\right|\Rightarrow x=\pm\dfrac{47}{6}\)
f, \(2^{x-3}=4\)
\(2^{x-3}=2^2\)
=> \(x-3=2\)
=> \(x=5\)
a, Ta có \(\left|x\right|=1,21\)
\(\Rightarrow\left[{}\begin{matrix}x=1,21\\x=-1,21\end{matrix}\right.\)
Vậy \(x\in\left\{1,21;-1,21\right\}\)
1.
\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)
\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)
\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)
\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)
\(=\dfrac{-48}{12}\)
\(=-4\)
2.
a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)
\(\Leftrightarrow x=\dfrac{-11}{20}\)
b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)
3.
a) \(\dfrac{16}{2^n}=2\)
\(\Leftrightarrow2^n=16:2\)
\(\Leftrightarrow2^n=8\)
\(\Leftrightarrow2^n=2^3\)
\(\Leftrightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{81}=-27\)
\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Leftrightarrow n=7\)
4. Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Vì \(x-y+x=-49\) ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
Lời giải:
a.
$(\frac{-1}{3})^3.x=\frac{1}{81}=(\frac{-1}{3})^4$
$\Rightarrow x=(\frac{-1}{3})^4: (\frac{-1}{3})^3=\frac{-1}{3}$
b.
$2^2.16> 2^x> 4^2$
$\Rightarrow 2^2.2^4> 2^x> (2^2)^2$
$\Rightarrow 2^6> 2^x> 2^4$
$\Rightarrow 6> x> 4$
$\Rightarrow x=5$ (với điều kiện $x$ là số tự nhiên nhé)
c.
$9.27< 3^x< 243$
$3.3^3< 3^x< 3^5$
$\Rightarrow 3^4< 3^x< 3^5$
$\Rightarrow 4< x< 5$
Với $x$ là stn thì không có số nào thỏa mãn.
a.\(x-\dfrac{2}{3}=\dfrac{8}{7}\)
\(x=\dfrac{8}{7}+\dfrac{2}{3}\)
x=\(\dfrac{38}{21}\)
b.\(\left(x+\dfrac{1}{3}\right)=\dfrac{4}{25}
\)
x=\(\dfrac{4}{25}-\dfrac{1}{3}\)
x=\(-\dfrac{13}{75}\)
c.\(-\dfrac{2}{3}:x+\dfrac{5}{8}=-\dfrac{7}{12}\)
\(-\dfrac{2}{3}:x=-\dfrac{29}{24}\)
x=\(\dfrac{16}{29}\)
\(a,\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)
=>Trong 2 số phải có 1 số âm và 1 số dương
Mà \(2-x>\dfrac{4}{5}-x\)
=>\(\dfrac{4}{5}< x< 2\)
Vậy...
a: =>x=(-2/3)^5:(-2/3)^2=(-2/3)^3=-8/27
b: =>x*(-1/3)^3=(-1/3)^4
=>x=-1/3
d: =>3x-2=-3
=>3x=-1
=>x=-1/3
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
a, \(x^2=\dfrac{1}{16}\Rightarrow x=\pm\dfrac{1}{4}\)
b, \(x^5:x^2=-\dfrac{1}{64}\Rightarrow x^3=\left(-\dfrac{1}{4}\right)^3\Rightarrow x=-\dfrac{1}{4}\)
c, \(x^3:x^2=\dfrac{32}{243}\Rightarrow x=\dfrac{32}{243}\)
d, \(\left(x^2\right)^2=\dfrac{81}{16}\Rightarrow x^4=\left(\dfrac{3}{2}\right)^4\Rightarrow x=\pm\dfrac{3}{2}\)
Chúc bạn học tốt!!!
3) Tìm x
a) \(^{x^2}\)=\(\dfrac{1}{16}\)
<=> x = \(\sqrt{-\dfrac{1}{16}}\)
\(\sqrt{\dfrac{1}{16}}\)
<=> x = -14
+14
b) \(x^{5^{ }}\): \(x^2\) = \(-\dfrac{1}{64}\)
<=> \(^{x^{5-2}}\) =\(-\dfrac{1}{64}\)
<=> \(x^3\) = \(-\dfrac{1}{64}\)
<=> x = \(-\dfrac{1}{4}\)
c)\(x^3:x^2\) = \(\dfrac{32}{243}\)
<=> \(^{x^{3-2}}\) = \(\dfrac{32}{243}\)
<=> x = \(\dfrac{32}{243}\)
d) \((x^2)^2\) = \(\dfrac{81}{16}\)
<=>\(^{x^{2.2}}\) = \(\dfrac{81}{16}\)
<=> \(x^4\) = \(\dfrac{81}{16}\)
<=> x = \(\dfrac{3}{2}\)
\(-\dfrac{3}{2}\)