K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Gọi độ dài các cạnh của tam giác ABC là x,y,z;đường cao là ha, hb, hc

Đặt ha=4; hb=12; hc=c

Ta có: \(\frac{ha.x}{2}=\frac{hb.y}{3}=\frac{hc.z}{2}=S=>x=\frac{2S}{ha};y=\frac{2S}{hb};z=\frac{2S}{hc}\)

Ta lại có: x+y>z ( bất đẳng thức tam giác)

\(\frac{2S}{ha}+\frac{2S}{hb}>\frac{2S}{hc}=>\frac{1}{ha}+\frac{1}{hb}>\frac{1}{hc}=>\frac{1}{4}+\frac{1}{12}>\frac{1}{a}=>\frac{1}{3}>a=>a< 3\)

y+z>x=> \(\frac{1}{hb}+\frac{1}{hc}>\frac{1}{ha}=>\frac{1}{12}+\frac{1}{a}>\frac{1}{4}=>\frac{1}{a}>\frac{1}{6}=>6>a\)

18 tháng 11 2017

=> a thuộc {4;5}

24 tháng 1 2020

Câu hỏi của ngoc Ngoc - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo ở link trên.

6 tháng 2 2016

Làm theo công thức nha bạn!!

1235689cm2

duyet di

24 tháng 1 2020

Gọi độ dài ba cạnh (ba đáy của các đường cao tương ứng) lần lượt là a,b,c

Cùng 1 tam giác, đường cao và đáy là các đại lượng tỉ lệ nghịch nên :

\(\frac{4a}{2}=\frac{12b}{2}=\frac{xc}{2}=S\)(S là diện tích tam giác ABC)

\(\Rightarrow2a=6b=\frac{x}{2}.c=S\)

\(\Rightarrow\hept{\begin{cases}a=\frac{S}{2}\\b=\frac{S}{6}\\c=\frac{2S}{x}\end{cases}}\)

Theo bất đẳng thức tam giác ,ta có:

\(a-b< c< a+b\)

\(\Rightarrow\frac{S}{2}-\frac{S}{6}< \frac{2S}{x}< \frac{S}{2}+\frac{S}{6}\)

\(\Rightarrow\frac{S}{3}< \frac{2S}{x}< \frac{2S}{3}\)

\(\Rightarrow\frac{2S}{6}< \frac{2S}{x}< \frac{2S}{3}\)

\(\Rightarrow3< x< 6\)

Mà x là số tự nhiên nên x = 4 hoặc x = 5

24 tháng 1 2020

Câu hỏi của ngoc Ngoc - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo ở link trên.

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81913286483.html

22 tháng 2 2019

Gọi a, b, c là độ dài 3 cạnh của tam giác 

S là diện tích tam giác

x là độ dài đường cao thứ 3

Ta có: S=\(\frac{1}{2}.3^2.a=\frac{1}{2}.4^3.b=\frac{1}{2}.x.c\)

=> \(\hept{\begin{cases}a=\frac{2S}{9}\\b=\frac{2S}{64}\\c=\frac{2S}{x}\end{cases}}\)

Mà theo bất đặng thức tam giác ta có:

a-b<c<a+b\(\Rightarrow\frac{2S}{9}-\frac{2S}{64}< \frac{2S}{x}< \frac{2S}{9}+\frac{2S}{64}\)=> \(\frac{1}{9}-\frac{1}{64}< \frac{1}{x}< \frac{1}{9}+\frac{1}{64}\Rightarrow\frac{55}{576}< \frac{1}{x}< \frac{73}{576}\)

<=> 7,89<x<10,47

Vì x có độ dài là lập phương của một số tự nhiên 

=> x=8 

5 tháng 6 2015

thay a = x cho dễ nhé

Ta có: 

4a/2 = 12b/2 = xc/2 = S     (S là diện tích tam giác)
 =>  a = 2 ; b = 6 ; c = 2S /x
Do x - y < z < x + y (bất đẳng thức trong tam giác)
 => S/2 - S/6 < 2S/x < S/2 + S/6 
 => 2S /6 < 2S /x < 2S/3 .  Mà x thuộc Z
=>  x = {4 ,5}

5 tháng 6 2015

cách 2:

 gọi a,b,c là độ dại 3 cạnh,ha,hb,hc là 3 đường cao tương ứng 
ha = 4 và hb = 12,ta tìm hc 
+ ta có 
S = 1/2*a.ha 
=>a = 2S/ha 
tương tự 
b = 2S/hb 
và 
c=2S/hc 
+ do ABC la 1 tam giác nên 
* a + b > c 
=> 2S/ha + 2S/hb > 2S/hc 
<> 1/hc < 1/4 + 1/12 = 1/3 
=> hc > 3 
* b + c > a 
=> 1/12 + 1/hc > 1/4 
<>1/hc > 1/6 
=> hc < 6 
do hc nguyên nên hc = 4 hoạc hc = 5