K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giải thích the ý hiểu thôi nhé

ta có thể chắc chắn rằng \(O,Q,N\) THẲNG HÀNG VÀ \(O,M,P\)THẲNG HÀNG

VÀ DO \(OM\perp AB;OP\perp CD\),2 ĐOẠN THẲNG  \(AB\) VÀ \(DC\) SONG SONG VỚI NHAU NÊN \(MP\) LÚC NÀY SẼ LÀ KHOẢNG CÁCH CỦA 2 ĐOẠN THẲNG  \(AB\) VÀ \(DC\) ,MP KO ĐỔI(DO CẠNH HÌNH VUÔNG ABCD KO ĐỔI),VÌ THẾ NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OP+OM=MP SẼ KO ĐỔI,CÒN NẾU O NẰM NGOÀI THÌ LÚC NÀY O SẼ KO CÒN  NẰM TRÊN ĐOẠN THẲNG MP nên lúc này \(OM+OP\ne MP\),NHƯ VẬY TA ĐÃ CM ĐC NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OM+OP KO ĐỔI(1)

CM TƯƠNG TỰ THÌ TA CÓ OQ+ON KO ĐỔI(2)(KHI MÀ O NẰM TRONG HÌNH VUÔNG ABCD)

TỪ 1 VÀ 2  \(\Rightarrow\) KHI O nằm TRONG HÌNH VUÔNG ABCD THÌ \(OM+ON+OP+OQ\) KO ĐỔI(ĐPCM)

COI QUÂN XE LÀ ĐIỂM O THÌ DO QUÂN XE CHỈ ĐI NGANG DỌC NÊN NÓ CŨNG ĐỊNH RA TRÊN BÀN CỜ NHỮNG ĐOẠN THẲNG VUÔNG GÓC NHÉ,CM TƯƠNG TỰ TRÊN LÀ ĐC

19 tháng 2 2022

Có thể giải thích như thế này:

Ta có \(S_{OAB}=\frac{1}{2}OM.AB=\frac{1}{2}a.OM\)\(S_{OBC}=\frac{1}{2}ON.BC=\frac{1}{2}a.ON\)\(S_{OCD}=\frac{1}{2}OP.CD=\frac{1}{2}a.OP\)\(S_{ODA}=\frac{1}{2}OQ.AD=\frac{1}{2}a.OQ\)

Từ đó ta có: \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{OAD}=\frac{1}{2}a\left(OM+ON+OP+OQ\right)\)

Vì hình vuông ABCD cố định nên \(S_{ABCD}\)không đổi và \(a\)không đổi, từ đó dẫn đến \(OM+ON+OP+OQ\)không đổi.

(*) Cũng coi quân xe là điểm O và giải thích tương tự.

a) xét tứ giác ABOC có

\(\widehat{ABO}=\widehat{ACO}=90^0\)(tiếp tuyến AB,AC)

=> tứ giác ABOC nội tiếp

b) Xét tam giác  ABH zà tam giác AOB có

\(\hept{\begin{cases}\widehat{ABO}chung\\\widehat{BHA}=\widehat{OBA}=90^0\left(BC\perp CA\left(tựCM\right)\right)\end{cases}}\)

=> \(\Delta ABH~\Delta AOB\left(g.g\right)\)

\(=>\frac{AB}{AO}=\frac{AH}{AB}=>AH.AB=AB.AB\left(1\right)\)

xét tam giác ABD zà tam giác AEB có

\(\widehat{BAE}chung\)

\(\widehat{ABD}=\widehat{BEA}\)(cùng chắn \(\widebat{BD}\))

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)

\(=>\frac{AB}{AE}=\frac{AD}{AB}=>AE.AD=AB.AB\left(2\right)\)

từ 1 zà 2 suy ra

AH.AO=AE.AD(dpcm)

=>\(\Delta ADH~\Delta AOE\)

\(=>\widehat{DEO}=\widehat{DHA}\)(2 góc tương ứng

lại có 

\(\widehat{DHA}+\widehat{DHO}=180^0=>\widehat{DEO}+\widehat{DHO}=180^0\)

=> tứ giác DEOH nội tiếp

c)  Có tam giá AOM zuông tại O , OB là đường cao

\(=>\frac{1}{OA^2}+\frac{1}{OM^2}=\frac{1}{OB^2}=\frac{1}{R^2}\)

\(\frac{1}{OA.OM}=\frac{1}{OA}.\frac{1}{OM}\le\frac{1}{\frac{OA^2+OM^2}{2}}=\frac{1}{\frac{R^2}{2}}=\frac{1}{2R^2}\left(a,b\le\frac{a^2+b^2}{2}\right)\)

=>\(OA.OM\ge2R^2=>MinS_{AMN}=2R^2\)

dấu = xảy ra khi OA=OM

=> tam giác OAM zuông cận tại O

=> góc A = độ

bài 2 

ra kết quả là \(6\pi m^2\)

nếu cần giải bảo mình 

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

0
Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à

18 tháng 12 2018

a, Kẻ OM ⊥ CD

Gọi K = OD ∩ d => ∆COK = ∆COD

=> OK = OD => OM = OA = R => CD là tiếp tuyến

b, AC+BD=CM+DM=CD ≥ AB

Do đó min (AC+BD)=AB

<=> CD//AB => ABCD là hình chữ nhật <=> AC = AO

c, AC.BD = MC.MD =   O M 2 =  4 a 2

=>  1 O C 2 + 1 O D 2 = 1 4 a 2

d, Từ tính chất hai giao tuyến => MN//BD => MNAB hay MHAB;

AC//BD; MN//BD; NH//BD

=>  M N B D = N H B D => MN = NH

1 tháng 12 2021

Dạ e học lớp 6

1 tháng 12 2021

làm ơn k cho mik đi ạ

THANKS