K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Giups câu f, thôi

29 tháng 4 2020

a.Vì CM,CA là tiếp tuyến của (O)

\(\Rightarrow OC\) là phân giác \(\widehat{AOM},CM=CA\)

Tương tự \(OD\) là phân giác \(\widehat{BOM},DM=DB\)

\(\Rightarrow AC+BD=CM+DM=CD\)

b . Từ câu a ) 

\(\Rightarrow\widehat{COD}=\widehat{COM}+\widehat{MOD}=\frac{1}{2}\widehat{AOM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{AOB}=90^0\)

c . Ta có : 

\(OC\perp OD,OM\perp CD\Rightarrow CM.DM=OM^2\)

Mà \(AC=CM,DM=DB,OM=R\Rightarrow AC.BD=R^2=\frac{AB^2}{4}\)

d.Vì CA,CM là tiếp tuyến của (O)

\(\Rightarrow OC\perp AM\)

Mà \(AM\perp BM\) vì AB là đường kính của (O)

=> oc//bm 

e . Lấy I là trung điểm CD vì \(\widehat{COD}=90^0\) \(\Rightarrow\left(I,IO\right)\)là đường tròn đường kính CD

Mà O là trung điểm AB,AC //DB \(\left(\perp AB\right)\)

=> IO là đường trung bình hình thang ◊ABDC

=> IO//AC \(\Rightarrow IO\perp AB\)

=> AB  là tiếp tuyến của (I,IO)

Hay AB là tiếp tuyến của đường tròn đường kính CD

f ) Ta có : \(AC//BD,CM=CA,DM=DA\)

\(\Rightarrow\frac{NA}{ND}=\frac{AC}{BD}=\frac{CM}{MD}\)

\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)

g ) .Để ABDC có chu vi nhỏ nhất

\(\Rightarrow AB+BD+AC+CD\) nhỏ nhất 

\(\Rightarrow AB+CD+CD\)nhỏ nhất 

\(\Rightarrow AB+2CD\)nhỏ nhất

\(\Rightarrow CD\) nhỏ nhất

Mà \(CD\ge AB\) vì ABCD là hình thang vuông tại A,B

Dấu " = " xảy ra khi CD//AB => M  nằm giữa A và B

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm

DM là tiếp tuyến có M là tiếp điểm

Do đó: DB=DM

Ta có: MC+MD=DC

mà MC=CA

và DM=DB

nên AC+DB=CD

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)

Ta có: MC+MD=CD

nên CD=CA+DB

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot DM=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)