Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm (m+2n)2 <= 9p2 ( bunhiacopxki)
=>m+2n <= 3p
Có 1/m+2/n=1/m +1/n + 1/n >= (1+1+1)2/(m+2n) >= 9/3p >= 3/p
dấu "=" khi m=n=p
bài này ko khó, bn biến đổi VT áp dụng C-S dạng Engel vào là dc
\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=9\)
\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)
\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)
\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)
\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)
\(B>2\left(\sqrt{36}-1\right)=10>9=A\)
\(\Rightarrow B>A\)
Để biểu thức B có nghĩa thì \(xy\ne0\)
Khi đó ta có:
\(x^3+y^3=2x^2y^2\)
\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)
\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)
\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)
\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)
\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ
\(A\ge\frac{\left(x+y+z\right)^2}{3}+\frac{9}{x+y+z}=\frac{\left(x+y+z\right)^2}{3}+\frac{9}{8\left(x+y+z\right)}+\frac{9}{8\left(x+y+z\right)}+\frac{27}{4\left(x+y+z\right)}\)
\(A\ge3\sqrt[3]{\frac{81\left(x+y+z\right)^2}{3.64\left(x+y+z\right)\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{27}{4}\)
\(A_{min}=\frac{27}{4}\) khi \(x=y=z=\frac{1}{2}\)