K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

15 tháng 1 2019

a, Nếu n=2k thì 3n-1 = 32k-1 = 9k-1 = (9-1)A = 8A chia hết cho 8

Nếu n=2k+1 thì 3n-1 = 32k+1-1 = 32k.3-1 = 9k.3-1 = 3(9k-1) + 2 chia 8 dư 2

Vậy 3n-1 chia hết cho 8 khi n = 2k

b, \(3^{2n+3}+2^{4n+1}=27.3^{2n}+2.2^{4n}\)

\(=25.3^{2n}+2.3^{2n}+2.2^{4n}=25.3^{2n}+2\left(3^{2n}+2^{4n}\right)\)

\(=25.3^{2n}+2\left(9^n+16^n\right)\)

Nếu n=2k thì 9n có tận cùng là 1, 16n có tận cùng là 6

=>2(9n+16n) có tận cùng là 4 không chia hết cho 25

Nếu n=2k+1 thì 9n+16n chia hết cho 9+16 = 25 do đó 32n+3+24n+1 chia hết cho 25

Vậy n = 2k+1

c, Nếu n=3k thì \(5^n-2^n=5^{3k}-2^{3k}=125^k-8^k=\left(125-8\right)A=117A⋮9\)

Nếu n=3k+1 thì \(5^n-2^n=5^{3k+1}-2^{3k+1}=125^k.5-8^k.2=5\left(125^k-8^k\right)+3.8^k\)

\(=BS9+3\left(BS9-1\right)^k=BS9+BS9-3⋮9̸\)

Nếu n=3k+2 thì \(5^n-2^n=5^{3k+2}-2^{3k+2}=125^k.25-8^k.4\)

\(=25\left(125^k-8^k\right)+21.8^k=BS9+21\left(BS9-1\right)^k=BS9+BS9-21⋮9̸\)

Vậy n=3k

19 tháng 8 2016

a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8

19 tháng 8 2016

b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4

4 tháng 9 2018

\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)

\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)

\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)

\(=3n\left(3n+8\right)⋮3\)

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bài 2: 

a: \(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\cdot\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\cdot\left(2n-1-1\right)\left(2n-1+1\right)\)

\(=2n\left(2n-2\right)\left(2n-1\right)\)

\(=4n\left(n-1\right)\left(2n-1\right)\)

Vì n;n-1 là hai số nguyên liên tiếp

nên n(n-1) chia hết cho 2

=>4n(n-1) chia hết cho 8

=>4n(n-1)(2n-1) chia hết cho 8

b: \(n^3-19n=n^3-n-18n\)

\(=n\left(n-1\right)\left(n+1\right)-18n\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

=>n(n-1)(n+1)-18n chia hết cho 6