Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,|x2−13x2−13| = 3232
b, 32−1232−12 ( 2x-1)=3434
c, |x-1|+2x=2
a)\(\left|\dfrac{x}{2}-\dfrac{1}{3}\right|=\dfrac{3}{2}\)
TH1
\(\dfrac{x}{2}-\dfrac{1}{3}=\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=\dfrac{11}{6}\)
=>x=\(\dfrac{11.2}{6}\)
=>x=\(\dfrac{11}{3}\)
TH2
\(\dfrac{x}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=-\dfrac{3}{2}+\dfrac{1}{2}\)
=>\(\dfrac{x}{2}=-1\)
=>x=-2
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)
\(\text{a) }3-2\left|4x-5\right|=\dfrac{2}{6}\\ \Leftrightarrow2\left|4x-5\right|=\dfrac{8}{3}\\ \Leftrightarrow\left|4x-5\right|=\dfrac{4}{3}\\ \Leftrightarrow4x-5=-\dfrac{4}{3}\text{ hoặc :}\\ 4x-5=-\dfrac{4}{3}\\ \Leftrightarrow\left[{}\begin{matrix}4x-5=-\dfrac{4}{3}\\4x-5=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{11}{3}\\4x=\dfrac{19}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{19}{12}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{11}{12}\text{ hoặc }x=\dfrac{19}{12}\)
b) \(\left|4-7x\right|-\dfrac{3}{2}:5=\left|-1\dfrac{1}{3}\right|\)
\(\left|4-7x\right|-\dfrac{3}{10}=\dfrac{4}{3}\)
\(\left|4-7x\right|=\dfrac{49}{30}\) (*)
+) Nếu 4 - 7x \(\ge\) 0 \(\Rightarrow x\le\dfrac{4}{7}\)
PT (*) \(\Leftrightarrow4-7x=\dfrac{49}{30}\)
\(-7x=-\dfrac{71}{30}\)
x = \(\dfrac{71}{210}\) (t/m)
+) Nếu \(4-7x< 0\Rightarrow x>\dfrac{4}{7}\)
Pt (*) \(\Leftrightarrow-4+7x=\dfrac{49}{30}\)
x = \(\dfrac{169}{210}\) (t/m)
Vậy x=\(\dfrac{71}{210}\) hoặc x = \(\dfrac{169}{210}\)
\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{4031}{2015^2.2016^2}\)
\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{2016^2-2015^2}{2015^2.2016^2}\)
\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{2015^2}-\dfrac{1}{2016^2}\)
\(A=1-\dfrac{1}{2016^2}< 1\left(đpcm\right)\)
Đặt \(A=\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2019^3}\)
\(\Rightarrow2A=\frac{2}{2^3}+\frac{2}{3^3}+...+\frac{2}{2019^3}\)
Ta có:
\(\left\{{}\begin{matrix}\frac{2}{2^3}< \frac{2}{1.2.3}\\\frac{2}{3^3}< \frac{1}{2.3.4}\\....\\\frac{2}{2019^3}< \frac{2}{\left(2019-1\right).2019.\left(2019+1\right)}\end{matrix}\right.\)
\(\Rightarrow2A< \frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{\left(2019-1\right).2019.\left(2019+1\right)}\)
\(\Rightarrow2A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(2019-1\right).2019}-\frac{1}{2019.\left(2019+1\right)}\)
\(\Rightarrow2A< \frac{1}{1.2}-\frac{1}{2019.\left(2019+1\right)}\)
\(\Rightarrow2A< \frac{1}{1.2}-\frac{1}{2019.2020}\)
\(\Rightarrow A< \left(\frac{1}{1.2}-\frac{1}{4078380}\right):2\)
\(\Rightarrow A< \frac{1}{1.2}:2-\frac{1}{4078380}:2\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{8156760}\)
\(\Rightarrow A< \frac{1}{2^2}-\frac{1}{8156760}\)
Vì \(\frac{1}{2^2}-\frac{1}{8156760}< \frac{1}{2^2}.\)
\(\Rightarrow A< \frac{1}{2^2}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
Lời giải:
$3-2x-\frac{1}{3}=7x-\frac{1}{4}$
$3-\frac{1}{3}+\frac{1}{4}=2x+7x$
$\frac{35}{12}=9x$
$x=\frac{35}{108}$
\(3-2x-\dfrac{1}{3}=7x-\dfrac{1}{4}\)
\(\Leftrightarrow3-\dfrac{1}{3}+\dfrac{1}{4}=7x-2x\)
\(\Leftrightarrow5x=\dfrac{35}{12}\)
\(\Leftrightarrow x=\dfrac{7}{12}\)