Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thiếu !!! tìm GNNN của biểu thức A nha !
\(A=\left|x-2\right|+3\left|2x-7\right|+\left|x-5\right|=\left(\left|x-2\right|+\left|5-x\right|\right)+3\left|2x-7\right|\)
\(A\ge\left|x-2+5-x\right|+3\left|2x-7\right|=3+3\left|2x-7\right|\ge3\)
Dấu "=" xảy ra <=> \(\left(x-2\right)\left(5-x\right)\ge0\) và \(3\left|2x-7\right|=0\)
\(\Leftrightarrow2\le x\le5\) và \(x=\frac{7}{2}\) (thỏa mãn)
Vậy GTNN của A là 3 tại \(x=\frac{7}{2}\)
a/ \(\left(3x-5\right)^{100}+\left(2y-1\right)=0\)
=> \(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}3x-5=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}3x=5\\2y=1\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{1}{2}\end{cases}}\).
3^x + 3^x .3^3 =75^6
3 x ( x + x + 3 ) = 75^6
3. (x . 2) + 9 = 75^6
bạn tự làm phần còn lại nhé
Sửa đề : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và \(x^2-y^2-z^2=-16\)
Ta có : \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow2y=3x\Rightarrow x=\frac{2y}{3}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Leftrightarrow4z=5y\Rightarrow z=\frac{5y}{4}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(x^2-y^2-z^2=-16\);ta được :
\(\left(\frac{2y}{3}\right)^2-y^2-\left(\frac{5y}{4}\right)^2=-16\)
\(\Leftrightarrow\frac{4y}{9}^2-y^2-\frac{25y^2}{16}=-16\)
\(\Leftrightarrow64y^2-144y^2-225y^2=-16.144\)
\(\Leftrightarrow-305y^2=-2304\)
\(\Leftrightarrow y^2=\frac{2304}{305}\Rightarrow y=\sqrt{\frac{2304}{305}}=2,748472005\)
Với \(y=\sqrt{\frac{2304}{305}}\Rightarrow x=\frac{2.\sqrt{\frac{2304}{305}}}{3}=-183231467;z=\frac{5.\sqrt{\frac{2034}{305}}}{4}=3,435590006\)
Vậy .................
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
a: TH1: x<-5
Pt sẽ là \(-x-5+3-x=9\)
=>-2x-2=9
=>-2x=11
=>x=-11/2(nhận)
TH2: -5<=x<3
Pt sẽ là x+5+3-x=9
=>8=9(loại)
TH3: x>=3
Pt sẽ là x+5+x-3=9
=>2x+2=9
=>x=7/2(nhận)
d: TH1: x<-2
Pt sẽ là \(2\left(-x-2\right)+4-x=22\)
=>-2x-4+4-x=22
=>-3x=22
=>x=-22/3(nhận)
TH2: \(-2< =x< 4\)
Pt sẽ là 2(x+2)+4-x=22
=>2x+4+4-x=22
=>x+8=22
=>x=14(loại)
TH3: x>=4
Pt sẽ là 2x+4+x-4=22
=>3x=22
=>x=22/3(nhận)
ta có \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\)
và \(\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}+\frac{5}{8}-\frac{5}{6}}=\frac{2\left(\frac{1}{2.2}-\frac{1}{3.2}+\frac{1}{4.2}\right)}{5\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}=\frac{2\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}{5\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}=\frac{2}{5}\)
Vậy \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}+\frac{5}{8}-\frac{5}{6}}=\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
ĐS: 1
Help me
l can't help you