Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(.S=3.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\right)\)
\(\Rightarrow S=3.\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{100}{101}\right)\)
\(S=\frac{60}{101}\)
\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+...+\frac{3}{96.101}\)
\(=3.\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{101}\right)\)
\(=\frac{3}{5}.\frac{100}{101}\)
\(=\frac{60}{101}\)
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\frac{100}{101}\)
\(\Leftrightarrow B=\frac{60}{101}\)
`A=-5/(1.6)-5/(6.11)-5/(11.16)-...-5/(2006.2011)`
`-A=5/(1.6)+5/(6.11)+5/(11.16)+...+5/(2006.2011)`
`-A=1-1/6+1/6-1/11+1/11-1/16+.....+1/2006-1/2011`
`-A=1-1/2011=2010/2011`
`A=-2010/2011`
\(b\)) \(Q=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)
\(a\)) Mình giải theo cách khác:
Chú ý rằng : \(\frac{3}{2.5}=\frac{1}{2}-\frac{1}{5};\frac{3}{5.8}=\frac{1}{5}-\frac{1}{8};\frac{3}{8.11}=\frac{1}{8}-\frac{1}{11};...;\frac{3}{17.20}=\frac{1}{17}-\frac{1}{20}\)
Do đó: \(P=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
Q=5(5/1x6+5/6x11+5/11x16+....+5/26x31)
Q=5(1/1-1/6+1/6-1/11+1/11-1/16+....+1/26-1/31)
Q=5(1/1-1/31)
Q=5x30/31
Q=150/31
\(Q=\frac{25}{1.6}+\frac{25}{6.11}+\frac{25}{11.16}+......+\frac{25}{26.31}.\)
\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\right)\)
\(Q=5\left(1-\frac{1}{31}\right)\)
CÒN ĐÔU PN TỰ LÀM NHA
a,1/1-1/4+1/4-1/7+...+1/2008-1/2011
=(1-1/2011)+(-1/4+1/4)+...+(-1/2008+1/2008)
=1-1/2011+0+...+0
=1-1/2011
=2010/2011
\(A=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{n\left(n+5\right)}\)
\(A=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{n+5-n}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+5}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{n+5}\right)\)
\(A=\frac{n+4}{5n+25}\)
\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3B=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3B=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
\(3B=n\left(n+1\right)\left(n+2\right)\)
\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Đặt 3/1.6 + 3.6.11 + ..... + 3/51.56=A
Có 5A= 5 (3/1.6 + 3/6.11 + ... + 3/51.56)
=>5A=3 ( 5/1.6 + 5/6.11 + .... + 3/51.56)
=>5A= 3 (1 - 1/6 + 1.6 - 1/11 +....+ 1/51-1/56)
=>5A=3 (1-1/56)
=>5A=3 . 55/56 =165/56
=>A=165/56 : 5 = 33/56
`=3/5.(5/[1.6]+5/[6.11]+5/[11.16]+...+5/[51.56])`
`=3/5.(1-1/6+1/6-1/11+1/11-1/16+....+1/51-1/56)`
`=3/5.(1-1/56)`
`=3/5 .55/56`
`=33/56`