K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

a) \(x^3-16x=0\)

<=> \(x\left(x^2-16\right)=0\)

<=> \(x\left(x-4\right)\left(x+4\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=-4;4\end{cases}}\)

b) \(2x^3-50x=0\)

<=> \(2x\left(x^2-25\right)=0\)

<=> \(2x\left(x-5\right)\left(x+5\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=5;-5\end{cases}}\)

c) \(x^3-4x^2-9x+36=0\)

<=> \(\left(x^3-4x^2\right)-\left(9x-36\right)=0\)

<=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)

<=> \(\left(x-4\right)\left(x^2-9\right)=0\)

<=> \(\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

<=> \(\orbr{\begin{cases}x=-3;3\\x=4\end{cases}}\)

1 tháng 7 2017

a)\(x^3-16x=0\)

   \(x\left(x^2-4^2\right)=0\)

     \(x\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

       x + 4 =0                  x = -4

b)Giống ở câu a

c)\(x^3-4x^2-9x+36=0\)

    \(x^2\left(x-4\right)+9\left(x-4\right)=0\)

    \(\left(x^2+9\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x^2+9=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\xkoTM\end{cases}}\)

    

17 tháng 6 2017

\(a,x^4-16x^2+32x-16=0\)

\(\Leftrightarrow\left(x^4-16\right)-16x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^4+4\right)\left(x-2\right)\left(x+2\right)-16x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x-4x+8\right)=0\)\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-2\right)+4x\left(x-2\right)-4\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+4x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2\left[\left(x+2\right)^2-8\right]=0\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{8}\\x+2=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{8}-2\\x=-\sqrt{8}-2\end{matrix}\right.\)

17 tháng 6 2017

câu nào dễ xơi trước

g) \(x^3+3x^2-2x-6=0\Leftrightarrow x^2\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x+3\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{2}\\x=-3\end{matrix}\right.\)

kl: ...........

17 tháng 8 2015

a) x^4 - 2x^2 + 1 = 0 

=> ( x^2 - 1 )^2 = 0 

=> x^2 - 1 = 0 

=> x^2 = 1 

=> x = 1 hoặc x = -1 

4 tháng 12 2016

a) x4-2x2+1=0

(thang Tran giải rồi nhé)

b) x4-2x2-8=0

<=> x^4 - 2x^2 +1 -9 =0 

<=>  (x^2 -1)^2 -9 =0

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=-3\\x^2-1=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-2\left(VN\right)\\x=+_-\sqrt{2}\end{cases}}}\)

Vậy x=+- căn 2

c) x4-4x2-60=0

\(\Leftrightarrow x^4-4x^2+4-64=0\)

\(\Leftrightarrow\left(x^2-2\right)-64=0\)

\(\Leftrightarrow\left(x^2+62\right)\left(x^2-66\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+62=0\\x^2-66=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-62\left(VN\right)\\x^2=+_-\sqrt{66}\end{cases}}}\)

Vậy x=+- căn 66

d) x6-16x2+64=0

23 tháng 7 2017

\(a,x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(b,x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow\left(x-2\right)x\left(x^2+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=0\\x^2+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\\left[{}\begin{matrix}x^2=10\\x^2=-10\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\sqrt{10}\\x=-\sqrt{10}\end{matrix}\right.\)\(c,\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow4x^2-4x+1=x^2+6x+9\)

\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)

\(\Leftrightarrow3x^2-10x-8=0\)

\(\Leftrightarrow3x^2-12x+2x-8=0\)

\(\Leftrightarrow3x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Phần d tương tự

23 tháng 7 2017

Câu a :

\(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-4^2\right)=0\)

\(\Leftrightarrow x\left[\left(x+4\right)\left(x-4\right)\right]=0\)

\(\Rightarrow\) \(x=0\)

\(\Rightarrow\) \(x+4=0\Rightarrow x=-4\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

Câu b :

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)\) \(=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Rightarrow x=0\)

\(\left(x-2\right)=0\Rightarrow x=2\)

\(x^2+10=0\) \(\Rightarrow\) x ( loại )

NV
2 tháng 9 2020

a/ \(\Leftrightarrow2x\left(x^2-25\right)=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

b/ \(\Leftrightarrow5\left(x^2-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+5\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+5-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)

10 tháng 9 2017

a) 2x3-50x=2x(x2-25)=0

=> \(\left\{{}\begin{matrix}2x=0=>x=0\\x^2-25=0=>x=\pm5\end{matrix}\right.\)

b) x3-8=(x-2)3

<=>(x-2)(x2+2x+4)=(x-2)(x2-4x+4)

<=>(x-2)(x2+2x+4)-(x-2)(x2-4x+4)=0

<=>(x-2)(x2-x2+2x+4x+4-4)

<=>6x(x-2)=0

\(=>\left\{{}\begin{matrix}6x=0=>x=0\\x-2=0=>x=2\end{matrix}\right.\)

c) x3+5x2-4x-20=0

<=>x2(x+5)-4(x+5)=0

<=>(x2-4)(x+5)=0

\(=>\left\{{}\begin{matrix}x^2-4=0=>x=\pm2\\x+5=0=>x=-5\end{matrix}\right.\)

10 tháng 11 2017

\(x^4-32x^2-16x+255=x^4+5x^3-7x^2-51x-5x^3-25x^2+35x+255\)

\(=\left(x^4+5x^3-7x^2-51x\right)-\left(5x^3+25x^2-35x-255\right)\)

\(=x\left(x^3+5x^2-7x-51\right)-5\left(x^3+5x^2-7x-51\right)\)

\(=\left(x^3+5x^2-7x-51\right)\left(x-5\right)\)

\(=\left[\left(x^3+8x^2+17x\right)-\left(3x^2-24x-51\right)\right]\left(x-5\right)\)

\(=\left[x\left(x^2+8x+17\right)-3\left(x^2+8x+17\right)\right]\left(x-5\right)\)

\(=\left(x^2+8x+17\right)\left(x-3\right)\left(x-5\right)\)

24 tháng 1 2018

Khó nhìn

oho

25 tháng 10 2019

\(2x^2-6x=0\)

\(\Rightarrow2x.\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}.\)

\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)

\(x^3-16x=0\)

\(\Rightarrow x.\left(x^2-16\right)=0\)

\(\Rightarrow x.\left(x^2-4^2\right)=0\)

\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy \(x\in\left\{0;4;-4\right\}.\)

Chúc bạn học tốt!