Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2x+3y=0\Rightarrow2x=-3y\Leftrightarrow\frac{x}{-3}=\frac{y}{2}\)(1)
\(4y+5z=0\Rightarrow4y=-5z\Leftrightarrow\frac{y}{-5}=\frac{z}{4}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{x}{15}=\frac{y}{-10}=\frac{z}{8}\)
Đặt \(\frac{x}{15}=\frac{y}{-10}=\frac{z}{8}=k\)
\(\Rightarrow x=15k;y=-10k;z=8k\)(3)
Thay (3) vào bt trên
\(15k.\left(-10\right)k+\left(-10\right)k.8k+15k.8k=110\)
\(\Rightarrow-150k+-80k+120k=110\)
\(\Rightarrow-110k=110\)
\(\Rightarrow k=-1\)
\(\Rightarrow x=-1.15=-15;y=-1.-10=10;z=-1.8=-8\)
Ta có: \(2x+3y=0\Rightarrow2x=-3y\Rightarrow\frac{x}{-3}=\frac{y}{2}\Rightarrow\frac{x}{-15}=\frac{y}{10}\)
\(\Rightarrow\frac{x}{-15}=\frac{y}{10}=k\)
\(\Rightarrow\orbr{\begin{cases}x=-15k\\y=10k\end{cases}}\)
Ta lại có: \(4y+5z=0\Rightarrow4y=-5z\Rightarrow\frac{y}{-5}=\frac{z}{4}\Rightarrow\frac{z}{-8}=\frac{y}{10}\)
\(\Rightarrow\frac{z}{-8}=\frac{y}{10}=k\)
\(\orbr{\begin{cases}z=-8k\\y=10k\end{cases}}\)
Mà \(\text{xy + yz + xz = 110}\)
\(\Rightarrow\left(-15\right)k.10k+10k.\left(-8\right)k+\left(-15\right)k.\left(-8\right)k=110\)
\(\Rightarrow\left(-150\right)k^2+\left(-80\right)k^2+120k^2=110\)
\(\Rightarrow k^2.\left(-150+-80+120\right)=110\)
\(\Rightarrow k^2.\left(-110\right)=110\)
\(\Rightarrow k^2=110:\left(-110\right)\)
\(\Rightarrow k^2=-1\)
\(\Rightarrow k\in\varnothing\)
\(\Rightarrow x,y,z\in\varnothing\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x+3y-5z}{10+12-15}=\dfrac{2x-3y+5z}{10-12+15}\\ \Rightarrow A=\dfrac{10+12-15}{10-12+15}=\dfrac{7}{13}\)
a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x
(3-2x)>0 suy ra|3-2x|=3-2x
ta có: 2-x+3-2x=2x+1
5-3x=2x+1
5-1=2x+3x
6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)
nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x
2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3
ta có:2-x+2x-3=2x+1
-1+x=2x+1
-1-1=2x-x
-2=x(loại vì ko thuộc khả năng xét)
nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2
3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3
ta có:x-2+2x-3=2x+1
3x-5=2x+1
3x-2x=5+1
x=6(chọn vì thuộc khả năng xét)
suy ra x=6
c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)
ta có: 4(15k)-3(10k)+5(8k)=7
60k-30k+40k=7
70k=7 suy ra k=1/10
ta có:x=1/10.15=3/2
y=1/10.10=1
b, Ta có xy + 2x -y = 5
\(\Leftrightarrow\) x(y+2) - (y+2) = 7
\(\Leftrightarrow\) (y+ 2) (x -1) = 7
\(\Leftrightarrow\) x - 1 \(\in\) \(\left\{\pm1,\pm7\right\}\)
Lập Bảng :
x-1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
y+2 | 7 | -7 | 1 | -1 |
y | 5 | -9 | -1 | -3 |
Hơi dài nên ko giải hết đc
2x=3y=5z
=>\(\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
=>\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=k\)
=>x=15k; y=10k; z=6k
Ta có: xy=1,5
=>\(15k\cdot10k=1,5\)
=>\(150\cdot k^2=1,5\)
=>\(k^2=\dfrac{1.5}{150}=\dfrac{1}{100}\)
=>\(k=\dfrac{1}{10};k=-\dfrac{1}{10}\)
TH1: \(k=\dfrac{1}{10}\)
=>\(x=15\cdot\dfrac{1}{10}=\dfrac{15}{10}=1,5;y=\dfrac{10}{10}=1;z=\dfrac{6}{10}=0,6\)
TH2: \(k=-\dfrac{1}{10}\)
=>\(x=15\cdot\dfrac{-1}{10}=-1,5;y=\dfrac{-10}{10}=-1;z=-\dfrac{6}{10}=-0,6\)