K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(\left\{{}\begin{matrix}2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{1}{7}.\frac{x}{3}=\frac{1}{7}.\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\\5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{1}{3}.\frac{x}{7}=\frac{1}{3}.\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\end{matrix}\right.\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{75}=\frac{3x-7y+5z}{63-98+75}=\frac{30}{40}=\frac{3}{4}\Rightarrow\left\{{}\begin{matrix}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{matrix}\right.\)

28 tháng 12 2020

+) 2x = 3y => \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\)   (1)

     5x = 7z => \(\dfrac{x}{7}=\dfrac{z}{5}\Rightarrow\dfrac{x}{21}=\dfrac{z}{15}\)   (2)

Từ (1) và (2) => \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)

Áp dụng tính chất DTSBN : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\cdot21=15,75\\y=\dfrac{3}{4}\cdot14=10,5\\z=\dfrac{3}{4}\cdot15=11,25\end{matrix}\right.\)

+) Áp dụng tính chất DTSBN : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot19=38\\y=2\cdot21=42\end{matrix}\right.\)

28 tháng 12 2020

a) Ta có: \(2x=3y\)

nên \(\dfrac{x}{3}=\dfrac{y}{2}\)

\(\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{14}\)(1)

Ta có: 5x=7z

nên \(\dfrac{x}{7}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{21}=\dfrac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)

hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)

mà 3x-7y+5z=30

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=\dfrac{3}{4}\\\dfrac{7y}{98}=\dfrac{3}{4}\\\dfrac{5z}{75}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{169}{4}\\7y=\dfrac{147}{2}\\5z=\dfrac{225}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{169}{12}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)

Vậy: (x,y,z)=\(\left(\dfrac{169}{12};\dfrac{21}{2};\dfrac{45}{4}\right)\)

b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\)

nên \(\dfrac{2x}{38}=\dfrac{y}{21}\)

mà 2x-y=34

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)

Vậy: (x,y)=(38;42)

28 tháng 12 2018

a) \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

\(3x-7y+5z=30\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\\\dfrac{y}{14}=2\\\dfrac{z}{10}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\).

b) Cách làm giống y hệt câu a nhé! Không khác đâu vì \(3x-7y+5z=3x+5z-7y\), nó chỉ đổi đổi vị trí các số hạng thoy.

12 tháng 7 2018

Theo đề bài ra ta có:

2x=3y => \(\dfrac{ }{ }\)x/3 = y/2

5x= 7z => x/7= z/ 5

Lại có :

X/3 = y/2 => x/ 21 = y/14 (1)

X/7 = z/5 => x/ 21 = z/15 (2)

Từ (1) và (2) => x/ 21= y/14= z/15 và 3x- 7y + 5z= 30(đề bài cho)

Áp dung t/c của dãy tỉ số bằng nhau ta có:

3x/ 63 - 7y/98 + 5z/75 = 30/40= 3/4

..........

Sau đó tự làm nha bạn

26 tháng 4 2018

Mink làm tắt nha

\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{7}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)\(=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{25}\)\(=\dfrac{3x-5y+5z}{63-98-25}=\dfrac{-1}{2}\)

\(\Rightarrow x=\dfrac{-21}{2};y=-7;z=\dfrac{-15}{2}\)

22 tháng 2 2019

bạn ơi bạn có bị ... ko 3x-7y+5z=?? làm bằng mắt ak bạn :D

suy ra x/3=y/2;x/5=z/7 suy ra x/15=y/10;x/15=z/21 suy ra  x/15=y/10=z/21

suy ra 3x/45=7y/70=5z/105

áp dụng t/c dãy tỉ số = nhau ta có:

3x/45=7y/70=5z/105=3x-7y+5z/45-70+105=.............

3x-7y+5z= mấy

11 tháng 11 2016

a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)

b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

11 tháng 11 2016

a) Giải:

Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

+) \(\frac{x}{3}=31\Rightarrow x=93\)

+) \(\frac{y}{5}=31\Rightarrow y=155\)

+) \(\frac{z}{-2}=31\Rightarrow z=-62\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(93;155;-62\right)\)

b) Giải:

Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

+) \(\frac{x}{21}=2\Rightarrow x=42\)

+) \(\frac{y}{14}=2\Rightarrow y=28\)

+) \(\frac{z}{10}=2\Rightarrow z=20\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(42;28;20\right)\)

27 tháng 7 2016

2x=3y => \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

                                                                              \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

5y=7z => \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) 

áp dụng tính chất của dãy tỉ số bằng nhau(còn lại tự tính)

27 tháng 7 2016

kích nha s3.jpgPhạm Quang Huy

 

8 tháng 9 2017

2x = 3y => x/3 = y/2 ; 5y = 7z => y/7 = z/5

x/3 = y/2 ; y/7 = z/5 => x/3 = 7y/14 ; 2y/14 = z/5 => x/21 = y/14 = z/10 => 5x/105 = 7y/98 = 5z/50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

5x/105 = 7y/98 = 5z/50 = 5x - 7y + 5z / 105 - 98 + 50 = 30/57

.......

14 tháng 11 2017

1/ Ta có xy=-6

Với x=-6 => y=1

x=-3 => y=2 

x= -2 => y=3

x=-1 => y=6

2/ Ta có x=y+4 

Thay x=y+4 vào bt, ta được 

<=> y+4-3/y-2 =3/2

<=> y+1/y-2=3/2

<=> 2(y+1)=3(y-2)

<=> 2y +2 = 3y - 6

<=> 3y - 2y= 2+ 6

<=> y= 8 <=> x= 12

3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5

-4/8 = -7/y <=> y=(-7)*8/(-4) =14

-4/8 = z/-24 <=> z= (-4)*(-24)/8=12

14 tháng 11 2017

1/ Ta có xy=-6

Với x=-6 => y=1

x=-3 => y=2 

x= -2 => y=3

x=-1 => y=6

2/ Ta có x=y+4 

Thay x=y+4 vào bt, ta được 

<=> y+4-3/y-2 =3/2

<=> y+1/y-2=3/2

<=> 2(y+1)=3(y-2)

<=> 2y +2 = 3y - 6

<=> 3y - 2y= 2+ 6

<=> y= 8 <=> x= 12

3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5

-4/8 = -7/y <=> y=(-7)*8/(-4) =14

-4/8 = z/-24 <=> z= (-4)*(-24)/8=12

22 tháng 4 2021

2x = 3y => 10x=15y
5y = 7z => 15y=21z
=> 10x=15y=21z =>x=2,1z
y=1,4z
Mà : 3x - 7y + 5z = 30 => 6,3z - 9,8z + 5z=30 =>1,5z=30
=>z=20
y=28
x=42

7 tháng 10 2021

Từ \(2x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}=\frac{x}{21}=\frac{y}{14}\)( 1 )

Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}=\frac{y}{14}=\frac{z}{10}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)

Thay vào \(3x+5z-7y=30\)ta có ;

\(3.21k+5.10k-7.14k=30\)

\(63k+50k-98k=30\)

\(15k=30\)

\(k=2\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=21.2\\y=14.2\\z=10.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)