Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a) Ta có: (2x-3)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-2\right\}\)
b) Ta có: (3x-1)(2x-5)=(3x-1)(x+2)
⇔\(\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[\left(2x-5\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{3};7\right\}\)
c) Ta có: \(\left(x^2-25\right)+\left(x-5\right)\left(2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\left(x-5\right)\left(2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5+2x-11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\cdot3\cdot\left(x-2\right)=0\)
mà 3≠0
nên \(\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: x∈{5;2}
d) Ta có: \(\left(x^2-6x+9\right)-4=0\)
\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vậy: x∈{5;1}
e) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;1;\frac{3}{2}\right\}\)
\(2x^3+5x^2+3x=0\\ < =>x\left(2x^2+5x+3\right)=0\\ < =>x\left[2x\left(x+1\right)+3\left(x+1\right)\right]=0\\< =>x\left(2x+3\right)\left(x+1\right)=0\\ < =>\left[{}\begin{matrix}x=0\\2x+3=0\\x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=\frac{-3}{2}\\-1\end{matrix}\right.\)
\(\left(x+5\right)\left(x-3\right)+x^2-25=0\\ < =>\left(x+5\right)\left(x+3\right)+\left(x-5\right)\left(x+5\right)=0\\ < =>\left(x+5\right)\left(x-3+x-5\right)=0\\ < =>\left(x+5\right)\left(2x-8\right)=0\\ < =>\left[{}\begin{matrix}x+5=0\\2x-8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
\(x\left(x-2\right)-3x+6=0\\ < =>x\left(x-2\right)-3\left(x-2\right)=0\\ < =>\left(x-2\right)\left(x-3\right)=0\\< =>\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
@Mốc
2x3 + 5x2 + 3x = 0
⇔ x.(2x2 + 5x + 3) = 0
⇔ x.(x + 1).(2x + 3) = 0
TH1: x = 0
TH2: x + 1 = 0
⇔ x = - 1
TH3: 2x + 3 = 0
⇔ x = \(\dfrac{-3}{2}\)
Vậy S = {0;- 1;\(\dfrac{-3}{2}\)}
(x + 5).(x - 3) + x2 - 25 = 0
⇔ (x + 5).(x - 3) + (x - 5).(x + 5) = 0
⇔ (x + 5).(x - 3 + x - 5) = 0
⇔ (x + 5).(2x - 8) = 0
TH1: x + 5 = 0
⇔ x = - 5
TH2: 2x - 8 = 0
⇔ x = 4
Vậy S = {- 5; 4}
x.(x - 2) - 3x + 6 = 0
⇔ x.(x - 2) - 3.(x - 2) = 0
⇔ (x - 2).(x - 3) = 0
TH1: x - 2 = 0
⇔ x = 2.
TH2: x - 3 = 0
⇔ x = 3
Vậy S = {2;3}
#chucbanhoctot:)
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\)
Ta có:
\(x^2+4x+6\)
\(=x^2+2.x.2+4+2\)
\(=\left(x+2\right)^2+2\)
Vì \(\left(x+2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+2\right)^2+2\ge2\) với mọi x
\(\Rightarrow x^2+4x+6\) vô nghiệm
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
b) \(3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
c) \(2\left(x+3\right)x^2-3x=0\)
\(\Rightarrow x\left[2\left(x+3\right)x-3\right]=0\)
\(\Rightarrow x\left(2x^2+6x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2+6x-3=0\end{matrix}\right.\)
Ta có:
\(2x^2+6x-3\)
\(=2\left(x^2+3x-\dfrac{3}{2}\right)\)
\(=2\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}-\dfrac{3}{2}\right)\)
\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\)
Vì \(2\left(x+\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\ge-\dfrac{15}{2}\) với mọi x
\(\Rightarrow2x^2+6x-3\) vô nghiệm
\(\Rightarrow x=0\)
b: ta có: \(x^2-5x=-6\)
\(\Leftrightarrow x^2-5x+6=0\)
=>(x-2)(x-3)=0
=>x=2 hoặc x=3
c: Sửa đề: \(\left(2x-1\right)^2-\left(3x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-1-3x-5\right)\left(2x-1+3x+5\right)=0\)
\(\Leftrightarrow\left(-x-6\right)\left(5x+4\right)=0\)
=>x=-6 hoặc x=-4/5
d: ta có: \(4x^2-20x+25=0\)
\(\Leftrightarrow\left(2x-5\right)^2=0\)
=>2x-5=0
hay x=5/2
e: \(\Leftrightarrow\left(3x-1-x+2\right)\left(3x-1+x-2\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(4x-3\right)=0\)
hay \(x\in\left\{-\dfrac{1}{2};\dfrac{3}{4}\right\}\)
Mình giải kĩ lại câu cuối nha.
\(\left(3x+5\right).\left(x^2+x+1\right)=0\)
+ Vì \(x^2+x+1>0\) \(\forall x.\)
\(\Rightarrow x^2+x+1\ne0.\)
\(\Leftrightarrow3x+5=0\)
\(\Leftrightarrow3x=0-5\)
\(\Leftrightarrow3x=-5\)
\(\Leftrightarrow x=\left(-5\right):3\)
\(\Leftrightarrow x=-\frac{5}{3}\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-\frac{5}{3}\right\}.\)
Chúc bạn học tốt!
e, x(x - 2) + x - 2 = 0
=> (x-1)(x-2) = 0
=> x - 1 = 0 hoặc x - 2 = 0
=> x = 1 hoặc x = 2
vậy_
b, x2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
2x2 - 5x + 3 = 0
=> 2.x.x - 5.x = -3
=> x(2x - 5) = -3
đoạn này lập bảng
d) 4x2 - 9x + 5 = 0
=> 4.x.x - 9.x = -5
=> x(4x - 9) = -5
đến đây cx lập bảng
a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0
1) x - 3 = 0 ⇔ x = 3
2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5
Vậy tập nghiệm của phương trình là S = {3;-2,5}
b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0
⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0
1) x - 2 = 0 ⇔ x = 2
2) -x + 5 = 0 ⇔ x = 5
Vậy tập nghiệm của phương trình là S = {2;5}
c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.
Vậy tập nghiệm của phương trình là x = 1
d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0
⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0
1) x - 2 = 0 ⇔ x = 2
2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72
Vậy tập nghiệm của phương trình là S = {2;72}
e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0
1) x - 7 = 0 ⇔ x = 7
2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1
Vậy tập nghiệm phương trình là: S= { 7; 1}
f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0
⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0
⇔ x = 3 hoặc x = 1
Vậy tập nghiệm của phương trình là S = {1;3}
2x(3x-5)-(5-3x)=0
2x(3x-5) + (3x-5) = 0 ( nhân dấu âm vào ngoặc đằng sau )
(3x-5)(2x+1)=0
\(\orbr{\begin{cases}3x-5=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-\frac{1}{2}\end{cases}}}\)
x^2 - 25 = 0
(x-5)(x+5) = 0 ( hằng đẳng thức số 3)
\(\orbr{\begin{cases}x-5=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}}\)