
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1)5(x^2-1)+x(1-5x)= x-2
<=>5x2-5+x-5x2=x-2
<=>-5+x=x-2
<=>x-x=-2+5
<=>0x=3(vô lí)
vậy ko tìm được x

c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)

Không có dấu '' = '' để tìm x nhé.
\([4.\left(x-y\right)^5+2.\left(x-y\right)^3-3.\left(x-y\right)^2];\left(y-x\right)^2\)
\(=[4.\left(x-y\right)^5+2.\left(x-y\right)^3-3.\left(x-y\right)^2]:\left(x-y\right)^2\)
\(=4.\left(x-y\right)^3+2.\left(x-y\right)-3\)
\(=4.\left(x^3-3x^2y+3xy^2-y^3\right)+2x-2y-3\)
\(=4x^3-12x^2y+12xy^2-y^3+2x-2y-3\)


a ) \(\dfrac{x-y}{x^3+y^3}.Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}:\dfrac{x-y}{x^3+y^3}\)
\(\Leftrightarrow Q=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\cdot\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x-y}\)
\(\Rightarrow Q=\left(x-y\right)\left(x+y\right)=x^2-y^2\)
Vậy \(Q=x^2-y^2\)
b ) \(\dfrac{x+y}{x^3-y^3}.Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}:\dfrac{x+y}{x^3-y^3}\)
\(\Leftrightarrow Q=\dfrac{3x\left(x+y\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x+y}\)
\(\Leftrightarrow Q=3x\left(x-y\right)=3x^2-3xy\)
Vậy \(Q=3x^2-3xy\)

\(A=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1=3\left[\left(x+y\right)^2-2xy\right]-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)
\(=3\left(x+y\right)^2-6xy-\left(x+y\right)^3+3xy\left(x+y\right)+1\)
\(=3\left(x+y\right)^2-\left(x+y\right)^3+xy\left(3x+3y-6\right)+1\)
\(=.................................\)