K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(abc=2xy^2.\left(-2\right)y^2z^4.2.z^2.x\)

\(abc=\left[2.\left(-2\right).2\right].\left(x.x\right).\left(y^2.y^2\right).\left(z^4.z^2\right)\)

\(abc=-8x^2y^4.z^6\)

Mà \(x^2y^4z^6\ge0\)

\(\Rightarrow-8x^2y^4z^6\le0\left(-8\le0\right)\)

\(\Rightarrow\)Có ít nhất 1 đơn thức âm

\(\Rightarrow\)Cả 3 đơn thức không thể cùng dương

Hok tốt

ta xét tích

\(a.b.c=-8x^2y^4z^6\)

do    \(x^2.y^4.z^6\ge0\) \(\forall x\) 

\(\Rightarrow\)\(a.b.c=-8x^2y^4z^6\)\(\le0\)  \(\forall x\)

\(\Rightarrow\) ít nhất có 1 đơn thức âm

\(\Rightarrow\) cả 3 đơn thức ko thể cùng dương

DD
4 tháng 8 2021

\(\frac{2}{x+y+z}=\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}2y+2z+1=4x\\2x+2z+1=4y\\x+y+z=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{17}{6}\\z=\frac{7}{3}\end{cases}}\)

24 tháng 10 2019

vote cho mk nhé ok

26 tháng 2 2017

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)

\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)

\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)

\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)