K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2023

mik đang cần gấp

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

$2^x+2^{x+1}+2^{x+2}+....+2^{x+2020}=2^{x+2024}-8$

$2^x(1+2+2^2+...+2^{2020})=2^{x+2024}-8$

$2^x(2+2^2+2^3+...+2^{2021})=2^{x+2025}-16$

$\Rightarrow 2^x(2+2^2+2^3+...+2^{2021})- (2^x(1+2+2^2+...+2^{2020}))=2^{x+2025}-16-(2^{x+2024}-8)$

$\Rightarrow 2^x(2^{2021}-1)=2^{x+2025}-2^{x+2024}-8$

$\Rightarrow 2^x(2^{2021}-1)=2^{x+2024}(2-1)-8$

$\Rightarrow 2^{x+2021}-2^x=2^{3+2021}-2^3$

$\Rightarrow x=3$

AH
Akai Haruma
Giáo viên
9 tháng 4 2023

Lời giải:

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2020}=2^{2024}-8$

$2^x(1+2+2^2+...+2^{2020})=2^{2024}-8(1)$

$2^x(2+2^2+2^3+...+2^{2021})=2^{2025}-16(2)$

Lấy $(2)$ trừ $(1)$ ta có:

$2^x(2^{2021}-1)=2^{2025}-16-(2^{2024}-8)=2^{2024}(2-1)-8$

$2^x(2^{2021}-1)=2^{2024}-8=2^3(2^{2021}-1)$

$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
 

11 tháng 4 2023

1.     Giải:

Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)

 

 \(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)

 \(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)

Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.

⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)

Ta có bảng:

   2x+1        1       3       7      21
       x        0       1       3      10
        TM      TM      TM      TM

Vậy xϵ\(\left\{0;1;3;10\right\}.\)

2. Giải:

Do (2x-18).(3x+12)=0.

⇒ 2x-18=0             hoặc             3x+12=0.

⇒ 2x     =18                               3x       =-12.

⇒   x     =9                                   x       =-4.

Vậy xϵ\(\left\{-4;9\right\}.\)

3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.

S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.

S= 0 + 0 + ... + 0 + 2025.

⇒S= 2025.

 

27 tháng 10 2020

Ta có : ( 2x - 1 )2020 = ( 2x - 1 )2021

=> ( 2x - 1 )2021 - ( 2x - 1 )2020 = 0

=> ( 2x - 1 )2020 . [( 2x -1 )1 - 1 ] = 0

=>  2x - 1 = 0               2x = 1                     x = 1/2

 hoặc                  =>                         =>

     2x - 1 = 1                2x = 2                     x =1

Vậy x = 1 hoặc x = 1/2

17 tháng 12 2023

a,  7\(x\).(2\(x\) + 10) = 0

        \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\){-5; 0}

          

         

17 tháng 12 2023

b, - 9\(x\) : (2\(x\) - 10) = 0

      - 9\(x\) = 0

           \(x\) = 0

c, (4 - \(x\)).(\(x\) + 3) = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

d, (\(x\) + 2023).(\(x\) - 2024) = 0

    \(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2023; 2024}

5 tháng 8 2023

\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)

\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)

\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^x=2^3\Rightarrow x=3\)

5 tháng 8 2023

\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)

Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)

\(\Rightarrow S+2^x-1=2^{x+2016}-1\)

\(\Rightarrow S=2^{x+2016}-2^x\)

\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)

\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^x=2^3\Rightarrow x=3\)

22 tháng 8 2023

a) \(\left(x-2024\right)^{2023}=1\)

\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)

\(\Rightarrow x-2024=1\)

\(\Rightarrow x=2025\)

b) \(\left(2x-1\right)^5=32\)

\(\Rightarrow\left(2x-1\right)^5=2^5\)

\(\Rightarrow2x-1=2\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

c) \(5< 2^x< 100\)

\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)

\(\Rightarrow2< x< 7\)

 

22 tháng 8 2023

b , x = 3/2 a và b mình ko biết

17 tháng 12 2023

a, 7\(x\).(2\(x\) + 10) =0

    \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

     \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\) {-5; 0}

 

17 tháng 12 2023

b, -9\(x\) : (2\(x\) - 10) = 0

    9\(x\)                   = 0 

     \(x\)                    = 0 

c, (4 - \(x\)).(\(x\) + 3)  = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}