K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 9 2020

Ý tưởng: đưa về dạng \(2x^2+\left(7y-1\right)x+6y^2-y+a=b\) với \(b-a=25\)

Sao cho vế trái tách được thành nhân tử

\(\Rightarrow\Delta=\left(7y-1\right)^2-8\left(6y^2-y+a\right)\) là 1 bình phương

\(\Rightarrow y^2-6y-8a+1\) là 1 bình phương

\(\Rightarrow1-8a=9\Rightarrow a=-1\)

Khi đó: \(\Delta=\left(y-3\right)^2\Rightarrow\left\{{}\begin{matrix}x=\frac{-7y+1-y+3}{4}=-2y+1\\x=\frac{-7y+1+y-3}{4}=\frac{-3y-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+2y-1=0\\2x+3y+1=0\end{matrix}\right.\) hay vế trái khi đó sẽ được tách thành:

\(\left(x+2y-1\right)\left(2x+3y+1\right)\)

Vậy ta làm như sau:

\(\Leftrightarrow2x^2+6y^2+7xy-x-y-1=24\)

\(\Leftrightarrow\left(x+2y-1\right)\left(2x+3y+1\right)=24\)

Đây là pt ước số cơ bản, chắc bạn tự lập bảng và tính được

26 tháng 1 2018

+, Nếu x = 0 => ko tồn tại y thuộc Z

+, Nếu x khác 0 => x^2 >= 1 => x^2-1 >= 0

Có : y^3 = x^3+2x^2+3x+2 > x^3 ( vì 2x^2+3x+2 > 0 )

Lại có : y^3 = (x^3+3x^3+3x+1)-(x^2-1) = (x+1)^3 - (x^2-1) < = (x+1)^3

=> x^3 < y^3 < = (x+1)^3

=> y^3 = (x+1)^3

=> x^2-1 = 0

=> x=-1 hoặc x=1

+, Với x=-1 thì y = 0

+, Với x=1 thì y = 2

Vậy .............

Tk mk nha

26 tháng 1 2018

Ta có: \(x^3+2x^2+3x+2=y^3\)                             (1)

Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{2}x\right)+2=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+2-2.\frac{9}{16}\)

\(=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\) Vì \(\left(x+\frac{3}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)

\(\Rightarrow y^3>x^3\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+2x^2+3x+2\ge\left(x+1\right)^3\) \(\Rightarrow x^3+2x^2+3x+2\ge x^3+3x^2+3x+1\)

\(\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-3x-2\le0\)

\(\Rightarrow x^2-1\le0\Rightarrow x^2\le1\) Vì \(x\in Z\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)

+ TH1: x2 = 0 => x =0 Thay vào pt (1) ta được y3 = 2 (loại) vì y nguyên

+ TH2 : x2 = 1 => \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Thay x=1 vào pt (1) ta đc: 1+2+3+2 = 8 = y3 => y = 2

Thay x= -1 vào pt (1) ta đc: -1 + 2 -3 +2 = 0 =y3 => y = 0

Vậy cặp (x;y) là (1;2) ; (-1;0).

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

$x^2+xy-6y^2+x+13y=17$

$\Leftrightarrow x^2+x(y+1)+(-6y^2+13y-17)=0$

Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:

$\Delta=(y+1)^2-4(-6y^2+13y-17)=t^2$ với $t$ là số tự nhiên

$\Leftrightarrow 25y^2-50y+69=t^2$

$\Leftrightarrow (5y-5)^2+44=t^2$

$\Leftrightarrow 44=t^2-(5y-5)^2=(t-5y+5)(t-5y-5)$

Đến đây là dạng pt tích đơn giản rồi.

 

28 tháng 11 2023

\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0

(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0

\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0

(\(x\) - 2).(\(x^4\) - y2 - 3) = 8

8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}

Lập bảng ta có:

\(x-2\) -8 -4 -2 -1 1 2 4 8
\(x\) -6 -2 0 1 3 4 6 10
\(x^4\) - y2 - 3 -1 -2 -4 -8 8 4 2 1
y  \(\pm\)\(\sqrt{1294}\) \(\pm\)\(15\) \(\pm\)1 \(\pm\)\(\sqrt{6}\) y2 = -10 (ktm) \(\pm\)\(\sqrt{249}\) \(\pm\)\(\sqrt{1291}\) \(\pm\)\(\sqrt{9996}\)

vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:

(\(x\); y) = (0; -1;); (0; 1)

 

NV
22 tháng 12 2020

\(P=\dfrac{x^2-6xy+6y^2}{x^2-2xy+y^2}=\dfrac{-3\left(x^2-2xy+y^2\right)+4x^2-12xy+9y^2}{x^2-2xy+y^2}\)

\(=-3+\left(\dfrac{2x-3y}{x-y}\right)^2\ge-3\)

\(P_{min}=-3\) khi \(2x=3y\)

NV
24 tháng 2 2021

\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)

\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)

\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)

Mà x nguyên dương \(\Rightarrow2x-1>0\)

\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\) 

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)

a: \(=2x^3-14x^2-6x\)

c: \(=-10x^5-15x^4+25x^3\)

9 tháng 12 2021

a) 2x. (x2 – 7x -3)

= 2x3- 14x2- 6x

b) ( -2x3 + y2 -7xy). 4xy2 

= -8x4y2+ 4xy4- 28x2y3

c)(-5x3).(2x2+3x-5)

= -10x5-15x4+25x3

d) (2x2 - xy+ y2).(-3x3)

=-6x5+ 3x4y -3x3y2

e)(x2 -2x+3). (x-4) 

=x3-2x2+3x -4x2+8x-12

=x3-6x2+11x-12

f) ( 2x3 -3x -1). (5x+2)

=10x4-15x2-5x +4x3-6x-2

=10x4+4x3-15x2-11x-2