Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
https://olm.vn/hoi-dap/detail/262254938778.html
\(\frac{x+2014}{2}+\frac{2x+4028}{7}=\frac{x+2014}{5}+\frac{x+2014}{6}\)
<=> \(\frac{x+2014}{2}+\frac{2\left(x+2014\right)}{7}=\frac{x+2014}{5}+\frac{x+2014}{6}\)
<=> \(\frac{x+2014}{2}+\frac{x+2014}{\frac{7}{2}}=\frac{x+2014}{5}+\frac{x+2014}{6}\)
<=> \(\frac{x+2014}{2}+\frac{x+2014}{\frac{7}{2}}-\frac{x+2014}{5}-\frac{x+2014}{6}=0\)
<=> \(\left(x+2014\right)\left(\frac{1}{2}+\frac{1}{\frac{7}{2}}-\frac{1}{5}-\frac{1}{6}\right)=0\)
Vì \(\frac{1}{2}+\frac{1}{\frac{7}{2}}-\frac{1}{5}-\frac{1}{6}\ne0\)
=> x + 2014 = 0 <=> x = -2014
Bài làm :
\(\frac{x+2014}{2}+\frac{2x+4028}{7}=\frac{x+2014}{5}+\frac{x+2014}{6}\)
\(\Rightarrow\frac{x+2014}{2}+\frac{2x+4028}{7}-\frac{x+2014}{5}-\frac{x+2014}{6}=0\)
\(\Rightarrow\frac{x+2014}{2}+\frac{2.\left(x+2014\right)}{7}-\frac{x+2014}{5}-\frac{x+2014}{6}=0\)
\(\Rightarrow\left(x+2014\right).\left(\frac{1}{2}+\frac{2}{7}-\frac{1}{5}-\frac{1}{6}\right)=0\)
\(\Rightarrow x+2014=0:\left(\frac{1}{2}+\frac{2}{7}-\frac{1}{5}-\frac{1}{6}\right)\)
\(\Rightarrow x+2014=0\)
\(\Rightarrow x=-2014\)
Vậy x = - 2014 .
Học tốt nhé
\(\dfrac{x+2014}{2}+\dfrac{2\left(x+2014\right)}{7}=\dfrac{x+2014}{5}+\dfrac{x+2014}{6}\)
\(\left(x+2014\right)\left(\dfrac{1}{2}+\dfrac{2}{7}\right)=\left(x+2014\right)\left(\dfrac{1}{5}+\dfrac{1}{6}\right)\)
\(\left(x+2014\right)\dfrac{11}{14}=\left(x+2014\right)\dfrac{11}{30}\)
Dấu ''=''↔x=-2014
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
Ta có: \(\left(2x-1\right)^{2014}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y+z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2014}=0\) (1)
\(\Rightarrow\left(y-\dfrac{2}{5}\right)^{2014}=0\) (2)
\(\Rightarrow\left|x+y+z\right|=0\) (3)
(1) Ta tìm được x:
\(\left(2x-1\right)^{2014}=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\dfrac{1}{2}\)
(2) Ta tìm được y:
\(\left(y-\dfrac{2}{5}\right)^{2014}=0\)
\(\Rightarrow y-\dfrac{2}{5}=0\)
\(\Rightarrow y=\dfrac{2}{5}\)
Từ (1) và (2) ta kết hợp với (3) ta sẽ tìm được z:
\(x+y+z=0\) hay \(\dfrac{1}{2}+\dfrac{2}{5}+z=0\)
\(\Rightarrow\dfrac{9}{10}+z=0\)
\(\Rightarrow z=-\dfrac{9}{10}\)
Vậy: \(x=\dfrac{1}{2};y=\dfrac{2}{5};z=-\dfrac{9}{10}\)
\(\left(2x-1\right)^{2014}+\left(y-\dfrac{2}{5}\right)^{2014}+|x+y+z|=0\left(1\right)\)
mà \(\left(2x-1\right)^{2014}\ge0;\left(y-\dfrac{2}{5}\right)^{2014}\ge0\) (với mọi x;y)
\(\left(1\right)\Rightarrow2x-1=0;y-\dfrac{2}{5}=0;|x+y+z|=0\)
\(\Rightarrow x=\dfrac{1}{2};y=\dfrac{2}{5};z=-\dfrac{1}{2}-\dfrac{2}{5}=-\dfrac{9}{10}\)