
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x^2-2x+x\)
\(=x^2-x=x\left(x-1\right)\)
b) \(x^2+y^2-2xy-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
c) \(x^2-y^2+6x+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)
\(x^2-2x+x\)
\(=\left(x^2-2x.1+1\right)+\left(x-1\right)\)
\(=\left(x-1\right)^2+\left(x-1\right)\)
\(=\left(x-1\right)\left(x-1+1\right)\)
\(=x.\left(x-1\right)\)

\(x^4+2x^3-6x-9.\)
\(=\left(x^2\right)^2+2.x^2.x+x^2-x^2-2.3.x-3^2\)
\(=\left(x^2+x\right)^2-\left(x^2+2.3.x+3^2\right)\)
\(=\left(x^2+x\right)^2-\left(x+3\right)^2\)
\(=\left[\left(x^2+x\right)+\left(x+3\right)\right].\left[\left(x^2+x\right)-\left(x+3\right)\right]\)
\(=\left(x^2+x+x+3\right).\left(x^2+x-x-3\right)\)
\(=\left(x^2+2x+3\right).\left(x^2-3\right)\)

Đổi dấu – (4yx2 + yz2)(z – y2) = (4yx2 + yz2)( y2 – z), ta có thừa số
(y2 – z) chung:
C = (y2 – z)(2x2y – yz) – (4yx2 + yz2)(z – y2) + 6x2z(y2 – z)
= (y2 – z)(2x2y – yz) + (4yx2 + yz2)( y2 – z) + 6x2z(y2 – z)
= (y2 – z)[( 2x2y – yz ) + (4yx2 + yz2) + 6x2z]
= (y2 – z)[ 2x2y + 4yx2 + 6x2z]
= (y2 – z)[ 2xy2 + 4yx2 + 6x2z]
= (y2 – z)[ 2x2(y + 2y + 3z)]
= (y2 – z)[ 2x2(3y + 3z)]
= (y2 – z) 2x2 .3(y + z)
= 6x2(y2 – z)(y + z).
a) 7x2 - 4x
= x ( 7x - 4 )
b) 5x2 - 2x + 10 xy - 4y
= x ( 5x - 2 ) + 2y ( 5x - 2 )
= ( x + 2y ) ( 5x - 2 )

Ta nhân thấy nghiệm của f(x) nếu có thì x = , chỉ có f(2) = 0 nên x = 2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2
Cách 1:
x3 – x2 – 4 =(x3-2x2)+(x2-2x)+(2x-4)=x2(x-2)+x(x-2)+2(x-2)=(x-2)(x2+x+2)
Cách 2:
(x-2)[(x2+2x+4)-(x+2)]=(x-2)(x2+x+2)
x3-x2-4=x3-8-x2+4=(x3-8)-(x2-4)=(x-2)(x2+2x+4)-(x-2)(x+2)

a) \(6x^2-x-1\)
\(=6x^2-3x+2x-1\)
\(=3x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\)

\(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)

\(\left(5x+1\right)^2=\left(2x-3\right)^2\)
\(\Rightarrow\left(5x+1\right)^2-\left(2x-3\right)^2=0\)
\(\Rightarrow\left(5x+1+2x-3\right)\left(5x+1-2x+3\right)=0\)
\(\Rightarrow\left(7x-2\right)\left(3x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x-2=0\\3x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=\frac{-4}{3}\end{cases}}}\)
Vậy.......
\(a,x^3-4x^2+8x-8\)
\(=\left(x^3-8\right)-\left(4x^2-8x\right)\)
\(=\left(x^3-2^3\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4-x+2\right)\)
\(=\left(x-2\right)\left(x^2+3x+6\right)\)
\(b,\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\cdot\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)
\(=\left[2x\left(y+1\right)+1\cdot\left(y+1\right)\right]\cdot\left[2x\left(y-1\right)-1\cdot\left(y-1\right)\right]\)
\(=\left[\left(y+1\right)\left(2x+1\right)\right]\cdot\left[\left(y-1\right)\left(2x-1\right)\right]\)
\(=\left(y+1\right)\left(y-1\right)\left(2x-1\right)\left(2x+1\right)\)
\(=\left(y^2-1\right)\left(4x^2-1\right)\)
\(c,1+6x-6x^2-x^3\)
\(=\left(1-x^3\right)-\left(6x^2-6x\right)\)
\(=\left(1^3-x^3\right)-6x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+2x+x^2\right)+6x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+2x+x^2+6x\right)\)
\(=\left(1-x\right)\left(1+8x+x^2\right)\)
\(a,x^2-9-2\left(x+3\right)^2=0\)
\(\Rightarrow\left(x^2-3^2\right)-2\left(x+3\right)^2=0\)
\(\Rightarrow\left(x-3\right)\left(x+3\right)-2\left(x+3\right)\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left[x-3-2\cdot\left(x+3\right)\right]=0\)
\(\Rightarrow\left(x+3\right)\left[x-3-2x-6\right]=0\)
\(\Rightarrow\left(x+3\right)\left(-x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\-x-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\-x=9\Rightarrow x=-9\end{cases}}\)
\(b,\left(5x+1\right)^2=\left(2x-3\right)^2\)
\(\Rightarrow\left(5x+1\right)^2\div\left(2x-3\right)^2=0\)
\(\Rightarrow\left[\left(5x+1\right)\div\left(2x-3\right)\right]^2=0\)
\(\Rightarrow\left(5x+1\right)\div\left(2x-3\right)=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow x=-\frac{1}{5}\)

8x2 + 6x3 = 2x2( 4 + 3x )
4x2 - 10x3 = 2x2( 2 - 5x )
10x2 - 2x3 = 2x2( 5 - x )
21x + 7y = 7( 3x + y )
2x2 + 4x = 2x( x + 2 )
3x2 + 6x = 3x( x + 2 )
2x2 - 4x = 2x( x - 2 )
a) \(8x^2+6x^3=2x^2\left(4+3x\right)\)
b) \(4x^2-10x^3=2x^2\left(2-5x\right)\)
c) \(21x+7y=3\left(7x+y\right)\)
d) \(2x^2+4x=2x\left(x+2\right)\)
e) \(3x^2+6x=3x\left(x+2\right)\)
f) \(2x^2-4x=2x\left(x-2\right)\)
đặt 2 ra ngoài rồi dùng hằng đẳng thức