K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

Ta có:

A = (x + 2)2 + (x - 3)2 = x2 + 4x + 4 + x2 - 6x + 9 = 2x2 - 2x + 13 = 2(x2 - x + 1/4) + 25/2 = 2(x - 1/2)2 + 25/2

Ta luôn có: (x - 1/2)2 \(\ge\) 0 \(\forall\)x  ----> 2(x - 1/2)2 \(\ge\) 0 \(\forall\)x

  => 2(x - 1/2)2 + 25/2 \(\ge\) 25/2 \(\forall\)x

Dấu "=" xảy ra khi: (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2

Vậy Amin = 25/2 tại x = 1/2

24 tháng 6 2019

B = x2 - 4x + y2 - 8y + 6 = (x2 - 4x + 4) + (y2 - 8y + 16) - 14 = (x - 2)2 + (y - 4)2  - 14

Ta luôn có: (x - 2)2 \(\ge\)\(\forall\)x

                 (y - 4)2 \(\ge\)\(\forall\)y

=> (x - 2)2 + (y - 4)2 - 14 \(\ge\) -14 \(\forall\)x,y

hay B \(\ge\)-14 \(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-2=0\\x-4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy Bmin = -14 tại x = 2 và y = 4

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

31 tháng 1 2020

Ta có: \(x^2+5y^2+2xy-4x-8y+2015\)

\(=\left(x^2+2xy+y^2\right)-\left(4x+8y\right)+4+\left(4y^2-4y+1\right)+2010\)

\(=[\left(x+y\right)^2-4\left(x+2y\right)+4]+\left(4y^2-4y+1\right)+2010\)

\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\)

mà \(\left(x+y-2\right)^2,\left(2y-1\right)^2\ge0\)

nên \(x^2+5y^2+2xy-4x-8y+2015\ge2010\)

Vậy MIN= 2010 \(\Leftrightarrow x=\frac{3}{2},y=\frac{1}{2}.\)

14 tháng 12 2019

a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}=\frac{6.2}{2x\left(x+4\right)}+\frac{3x}{2x\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(x+4\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)

c) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5.y}{2y\left(y+2\right)}+\frac{2\left(y-2\right)}{2y\left(y+2\right)}=\frac{-5y+2y-4}{2y\left(y+2\right)}=\frac{-3y-4}{2y\left(y+2\right)}\)

d) \(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x\left(x-2y\right)}-\frac{3}{x\left(x-2y\right)}=\frac{x-1-3}{x\left(x-2y\right)}=\frac{x-4}{x\left(x-2y\right)}\)

6 tháng 9 2020

1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16

= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16

= 8x3 + y3 - 8x3 - y3 - 16

= -16 ( đpcm )

2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3

= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3

= 24xy + 3 ( có phụ thuộc vào biến )

3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19

= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19

= -27 + 243 + 19 = 235 ( đpcm )

4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )

= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52

= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52

= -6x2 + 26x - 60 ( có phụ thuộc vào biến )

6 tháng 9 2020

1. (2x+y).(4x2-2xy+y2)-8x3-y3-16

=(2x)3+y3-8x3-y3-16

=-16

Vậy đa thức trên kh phụ thuộc vào biến x

2. (3x+2y)2+(3x+2y)2-18x2-8y2+3

=(9x2+12xy+4y2)+(9x2+12xy+4y2)-18x2-8y2+3

=9x2+12xy+4y2+9x2+12xy+4y2-18x2-8y2+3

=24xy+3

Vậy đa thức trên phụ thuộc biến x

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x