Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t=\(\sqrt{2019-x^{ }2}\)>0, nên \(t^2\)=2019-\(x^2\) hay \(x^2\)=2019-\(t^2\).
từ đề bài ta có: 2019-\(t^2\)-\(t^2\)-2017t=0
hay 2\(t^2\)+2017t-2019=0, nên t=1 và t=-2019/2<0 loại
t=1, nên \(x^2\)=2018, nên x=2018 hoặc x=-2018 thỏa điều kiện 2019-\(x^2\)>=0
Từ gt suy ra: \(x+\sqrt{x^2+2019}=\dfrac{2019}{y+\sqrt{y^2+2019}}=\sqrt{y^2+2019}-y\).
Tương tự: \(y+\sqrt{y^2+2019}=\sqrt{x^2+2019}-x\).
Do đó dễ dàng suy ra được: \(x+y=0\).
\(\Rightarrow x=-y\Rightarrow x^{2019}+y^{2019}=x^{2019}+\left(-x\right)^{2019}=0\left(đpcm\right)\).
\(x=1-\sqrt[2]{2}+\sqrt[2]{4}\)
\(\Leftrightarrow x\left(\sqrt[3]{2}+1\right)=\left(1-\sqrt[2]{2}+\sqrt[2]{4}\right)\left(\sqrt[3]{2}+1\right)=3\)
\(\Leftrightarrow\sqrt[3]{2}x=3-x\)
\(\Leftrightarrow2x^3=27-27x+9x^2-x^3\)
\(\Leftrightarrow x^3-3x^2+9x-9=0\)
Giờ tự rap xô vô nhe