K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

\(A=x^2+9x+25\)

\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)

\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)

Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)

b,\(B=4x^2-8x+\frac{21}{2}\)

\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)

\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)

Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)

c,\(C=-x^2+2x+\frac{5}{2}\)

\(=-\left(x^2-2x-\frac{5}{2}\right)\)

\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)

\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)

Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)

6 tháng 9 2020

Bài 1.

A = x2 + 9x + 25

= ( x2 + 9x + 81/4 ) + 19/4

= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x

Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2

=> MinA = 19/4 <=> x = -9/2

B = 4x2 - 8x + 21/2

= 4( x2 - 2x + 1 ) + 13/2

= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinB = 13/2 <=> x = 1

C = -x2 + 2x + 5/2

= -( x2 - 2x + 1 ) + 7/2

= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxC = 7/2 <=> x = 1

D = -9x2 - 12x + 27/2

= -9( x2 + 4/3x + 4/9 ) + 35/2

= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x

Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3

=> MaxD = 35/2 <=> x = -2/3

Bài 2.

a) 4x2 + 9y2 + 12x + 12y + 13 = 0

<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0

<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)

\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)

=> x = -3/2 ; y = -2/3

b) 16x2 + 4y2 - 8x + 12y + 10 = 0

<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0

<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)

\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)

=> x = 1/4 ; y = -3/2

8 tháng 9 2018

câu 1 

a, 5x - x 2 + 2xy - 5y 

= 5x - x 2 + xy + xy - 5y 

= ( 5x - 5y ) - ( x2 - xy ) + xy 

= 5 ( x-y ) - x(x-y ) + xy 

= (5-x) ( x-y) + xy 

mik làm dc mỗi câu a ! 

17 tháng 9 2016

a) \(\text{x^2-8x+25 }\)

\(\text{= (x^2-8x+16)+9 }\)

\(\text{=(x-4)^2+9 lớn hơn hoặc bằng 0 với mọi x}\)

\(\Rightarrow\)Biểu thức này luôn dương

b) \(4y^2-12y+11\)

\(=\left(4y^2-12y+9\right)+3\)

\(=\left(2y-3\right)^2+3\)lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow\)Biểu thức này luôn dương

17 tháng 9 2016

a) x2-8x+16+9

=(x-4)2+9 lớn hơn 0 

b) 4y2-12y+9+2

=(2y-3)2+2 lớn hơn 0

25 tháng 7 2016

Lấy pt (2) - pt (1) ta có:

                           8y + 8 = 0

=>                               y = -1

Thay y = -1 vào pt (1) ta có: 

       x2 - 10x + 26 = 0

( Giải phương trình bậc 2 bằng máy tính casio )

Ta được: x là số phức => phương trình vô nghiệm 

=>  Không tìm được cặp x,y thảo mãn hệ phương trình trên.

25 tháng 7 2016

Hỏi đáp Toán

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

8 tháng 7 2019

Đề là phân tích đa thức thành nhân tử hả bn

\(8x^2y^2-12y^3+16x^2\) 

\(4\left(2x^2y^2-3y^3+4x^2\right)\)