Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Ta có:
x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
= \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)
= \(\frac{1}{2}\)(\(\sqrt{2}\)-1)
=> 2x = \(\sqrt{2}\)-1
=> (2x)2= ( \(\sqrt{2}\)-1)2
=> 4x2= 2-2\(\sqrt{2}\)+1
=> 4x2= -2( \(\sqrt{2}\)-1)+1
=> 4x2= -4x +1 => 4x2+4x-1=0
Lại có:
A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19
= [ x3( 4x2+4x-1) +1]19
=1
A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3
= (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3
= 23=8
A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)
= \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)
Cộng 3 số vào ta được A
\(x=\frac{1}{2}\left(\sqrt{2}-1\right)\)
\(\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow4x^2=3-2\sqrt{2}=1-4.\frac{1}{2}\left(\sqrt{2}-1\right)=1-4x\)
\(\Leftrightarrow4x^2+4x-1=0\)
\(\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=1^{19}=1\)
\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1+4}^3=\sqrt{4}^3=8\)
\(\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}\left(4x^2+4x-1\right)+\frac{1}{2}}}=\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}}}=\sqrt{2}-2x=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)
\(M=1+8+1=10\)
Bạn ghi lộn đề rồi \(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2014}\) chứ không phải \(\left(\dfrac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\right)^{2014}\)
Ta có \(x=\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}=\dfrac{1}{2}\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2-1}\right)}}=\dfrac{1}{2}\sqrt{\left(\sqrt{2}-1\right)^2}=\dfrac{\left|\sqrt{2}-1\right|}{2}=\dfrac{\sqrt{2}-1}{2}\)
Vậy ta có \(x=\dfrac{\sqrt{2}-1}{2}\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow2x+1=\sqrt{2}\Leftrightarrow\left(2x+1\right)^2=2\Leftrightarrow4x^2+4x+1=2\Leftrightarrow4x^2+4x-1=0\)Ta lại có \(\left(4x^5+4x^4-x^3+1\right)^{19}=\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=\left(x^3.0+1\right)^{19}=1^{19}=1\)(1)
\(\left(\sqrt{4x^5+4x^4-5x^3+5x+3}\right)^3=\left(\sqrt{4x^5+4x^4-x^3-4x^3-4x^2+x+4x^2+4x-1+4}\right)^3=\left(\sqrt{x^3\left(4x^2+4x-1\right)-x^2\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\right)^3=\left(\sqrt{x^3.0+x^2.0+0+4}\right)^3=\left(\sqrt{4}\right)^3=2^3=8\left(2\right)\)
\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2014}=\left[\dfrac{1-\sqrt{2}.\dfrac{\sqrt{2}-1}{\sqrt{2}}}{\sqrt{2.\dfrac{3-2\sqrt{2}}{4}+\sqrt{2}-1}}\right]^{2014}=\left(\dfrac{\dfrac{1}{\sqrt{2}}}{\sqrt{\dfrac{3-2\sqrt{2}}{2}+\sqrt{2}-1}}\right)^{2014}=\left(\dfrac{\dfrac{1}{\sqrt{2}}}{\sqrt{\dfrac{3-2\sqrt{2}+2\sqrt{2}-2}{2}}}\right)^{2014}=\left(\dfrac{\dfrac{\dfrac{1}{\sqrt{2}}}{1}}{\sqrt{2}}\right)^{2014}=1^{2014}=1\left(3\right)\)
Cộng (1),(2),(3) theo vế ta được A=1+8+1=10
Vậy khi x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\) thì A=10
Để giải phương trình này, chúng ta cần tìm giá trị của x thỏa mãn điều kiện. Đầu tiên, chúng ta sẽ đưa tất cả các thuật ngữ có x về cùng một phía:
2x + 1/x + 3 ≥ 3 - 5x/5 + 4x + 1/4
Đặt chung mẫu số cho các thuật ngữ có x:
(8x^2 + 4 + 12x)/4x + 1/x + 3 ≥ (15 - x + 20x + 1)/20
Rút gọn các biểu thức:
(8x^2 + 4 + 12x)/4x + 1/x + 3 ≥ (16x + 16)/20
Nhân cả hai phía của bất đẳng thức với 20 để loại bỏ mẫu số:
20(8x^2 + 4 + 12x)/4x + 20(1/x) + 60 ≥ 16x + 16
Simplifying:
5(8x^2 + 4 + 12x) + 20 + 60x ≥ 16x + 16
Mở ngoặc và rút gọn:
40x^2 + 20x + 60 + 20 + 60x ≥ 16x + 16
40x^2 + 80x + 100 ≥ 16x + 16
Đưa tất cả các thuật ngữ về cùng một phía:
40x^2 + 64x + 84 ≥ 0
Để giải phương trình bậc hai này, chúng ta có thể sử dụng phương pháp định dạng:
Δ = b^2 - 4ac = 64^2 - 4(40)(84) = 4096 - 13440 = -9344
Vì Δ < 0, nên phương trình không có nghiệm thực. Do đó, không có giá trị của x thỏa mãn điều kiện ban đầu.