K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

trình bày ra giúp mk với ạ

27 tháng 10 2020

Vào thống kê của "Wall Duong" để xem đồ thị

a) 

b) Đỉnh I\(\left(\frac{3}{4};\frac{-1}{8}\right)\)trục đối xứng d: x=\(\frac{3}{4};a=2>0\)

Cho x=0 => y=1; y=1=> x=0,x=\(\frac{1}{2}\)

c) Ta có \(y=f\left(x\right)=2x^2-3\left|x\right|+1\)là hàm số chẵn, vì f(x)=f(-x) nên đồ thị đối xứng qua trục tung

Xét x>=0 thì y=2x2-3x+1 nên đồ thị y=f(x) lấy phần của prabol (P): y=2x2-3x+1 với x>=0 sau đó lấy phần đối xứng đó qua trục tung

Số nghiệm của phương trình 2x2-3|x|+1=m là số giao điểm của đồ thị y=f(x) với đường thẳng y=m

Phương trình vô nghiệm nếu m<\(-\frac{1}{8}\), có 2 nghiệm nếu \(\orbr{\begin{cases}m=\frac{-1}{8}\\m=1\end{cases}}\), có 3 nghiệm nếu m=1, có 4 nghiệm nếu \(-\frac{1}{8}< m< 1\)

5 tháng 5 2017

Điều kiện: x ,   y ≥ 1

Ta có:  2 x + y − 1 = 1 2 y + x − 1 = 1 ⇒ 2 x − 2 y + y − 1 − x − 1 = 0

⇒ 2 x − y + y − x y − 1 + x − 1 = 0 ⇒ x − y 2 − 1 y − 1 + x − 1 = 0

Khi x = y thì 2 x + x + 1 = 1 ⇒ x + 1 = 1 − 2 x (vô nghiệm do x ≥ 1  thì V T ≥ 0 ,   V P < 0 )

Khi y − 1 + x − 1 = 1 2 thì 2 x + 2 y + 1 2 = 2 ⇒ x + y = 3 4 (vô nghiệm vì x , y ≥ 1 )

Vậy hệ phương trình vô nghiệm

Đáp án cần chọn là: B

22 tháng 9 2021

1.A. Ta thấy để hàm số xác định thì x-m\(\ne\)0 hay x\(\ne\)m mà vì x\(\in\)(0,1) nên để x\(\ne\)m thì m\(\notin\)(0,1)=>m>=1 hoặc m<=0

2A để A giao B khác 0 thì 2m-1<=m+3 hay m<=4

3C.A giao B =A khi \(\left\{{}\begin{matrix}m< =-1\\m+5>=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< =1\\m>=-2\end{matrix}\right.\)

NV
12 tháng 7 2021

\(P=\dfrac{\left(cos^2x-sin^2x\right)^2}{4sin^2x.cos^2x}-\dfrac{1}{4sin^2x.cos^2x}=\dfrac{\left(cos^2x-1-sin^2x\right)\left(cos^2x+1-sin^2x\right)}{4sin^2x.cos^2x}\)

\(=\dfrac{-2sin^2x.2cos^2x}{4sin^2x.cos^2x}=-1\)

\(y^2-3y-1=0\) có \(ac=-1< 0\Leftrightarrow\) có 2 nghiệm trái dấu hay có 1 nghiệm dương

24 tháng 9 2023

Tham khảo:

a) Đường thẳng \(y = 2x + 1\) đi qua điểm \(A(0;1)\) và \(B\left( { - \frac{1}{2};0} \right)\)

b)

Vì \(2.( - 2) - 0 + 1 =  - 3 < 0\)nên \(( - 2;0)\) là nghiệm của bất phương trình \(2x - y + 1 < 0\)

Vì \(2.0 - 0 + 1 = 1 > 0\)nên \((0;0)\) không là nghiệm của bất phương trình \(2x - y + 1 < 0\)

Vì \(2.1 - 1 + 1 = 2 > 0\)nên \(( - 2;0)\) không là nghiệm của bất phương trình \(2x - y + 1 < 0\)

20 tháng 12 2017

Đáp án: B

5 tháng 11 2018

Đáp án: D

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 2. 

ĐK: $x\geq \frac{-11}{2}$

$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)

\(\Delta'(*)=12\)

\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$

$\Rightarrow a=1; b=-2\Rightarrow ab=-2$

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 1. 

Đặt $x^2+2x=t$ thì PT ban đầu trở thành:

$t^2-t-m=0(1)$

Để PT ban đầu có 4 nghiệm phân biệt thì:

Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$

Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt. 

Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$

Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$

Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)

Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$

b) 

Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$

PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$

Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$

Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$

c) Để PT ban đầu có nghiệm duy nhất thì:

\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất. 

d) 

Ngược lại phần b, $m\geq \frac{-1}{4}$

e) 

Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$

$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$