Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x+2\right|+\left|2y-1\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=0,5\end{cases}}\)
Vậy (x; y) = (-2; 0,5)
b) \(\left|x-y\right|+\left|2x+3\right|=0\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|2x+3\right|=0\end{cases}}\)
+) |2x + 3| = 0
2x + 3 = 0
2x = -3
x = -1,5
+) |x - y| = 0
x - y = 0
-1,5 - y = 0
y = -1,5
Vậy (x; y) = (-1,5; -1,5)
c, \(\left|2x+y\right|+\left|y+\left(1:4\right)\right|=0\)
\(\left|2x+y\right|+\left|y+\frac{1}{4}\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|2x+y\right|=0\\\left|y+\frac{1}{4}\right|=0\end{cases}}\)
\(\left|y+\frac{1}{4}\right|=0\Leftrightarrow y+\frac{1}{4}=0\Leftrightarrow y=-\frac{1}{4}\)
\(\left|2x+y\right|=0\Leftrightarrow2x+y=0\Leftrightarrow2x-\frac{1}{4}=0\Leftrightarrow2x=\frac{1}{4}\Leftrightarrow x=\frac{1}{8}\)
Vậy \(\left(x;y\right)=\left(\frac{1}{8};-\frac{1}{4}\right)\)
Hướng dẫn thôi nhé:
Lời giải:
a)\(xy+x+y+1=0\)
\(\Rightarrow x\left(y+1\right)+1\left(y+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\)
b)\(xy-x-y=0\)
\(\Rightarrow xy-x-y+1=1\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)
c)\(xy-x-y-1=0\)
\(\Rightarrow xy-x-y+1=2\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=2\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=2\)
d) \(xy-x-y+1=0\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
e)\(xy+2x+y+11=0\)
\(\Rightarrow xy+2x+y+2=-9\)
\(\Rightarrow x\left(y+2\right)+1\left(y+2\right)=-9\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=-9\)
a, \(|x-1|+|2x-y+3|=0\)
Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)
b, \(|x-y|+|x+y-2|=0\)
Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)
c, \(|x+y-1|+|2x-3y|=0\)
Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)
Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)
\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)
a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)
a/ |2x - 3| + |y - 2| = 0
Vì: \(\left\{{}\begin{matrix}\left|2x-3\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2x-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=2\end{matrix}\right.\)
b/ |3x - 4| + |x - y| = 0
Vì: \(\left\{{}\begin{matrix}\left|3x-4\right|\ge0\forall x\\\left|x-y\right|\ge0\forall x;y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3x-4=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\x=y=\dfrac{4}{3}\end{matrix}\right.\)
Vậy x = y = 4/3
c/ \(\left|2x+y-1\right|+\left|2y-3\right|=0\)
Vì: \(\left\{{}\begin{matrix}\left|2x+y-1\right|\ge0\forall x;y\\\left|2y-3\right|\ge0\forall y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2x+y-1=0\\2y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=-y\\y=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=-\dfrac{3}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=\dfrac{3}{2}\end{matrix}\right.\)
Vậy..........
d/ \(\left|x+y-5\right|+\left|2x-y+8\right|=0\)
Vì: \(\left\{{}\begin{matrix}\left|x+y-5\right|\ge0\\\left|2x-y+8\right|\ge0\end{matrix}\right.\)∀x;y
=> \(\left\{{}\begin{matrix}x+y-5=0\\2x-y+8=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\2x-y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\2\left(5-y\right)-y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\10-2y-y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\-3y=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-6=-1\\y=6\end{matrix}\right.\)
Vậy x = -1; y = 6
a/ |2x - 3| + |y - 2| = 0
Vì: {|2x−3|≥0∀x|y−2|≥0∀y{|2x−3|≥0∀x|y−2|≥0∀y
=> {2x−3=0y−2=0⇒⎧⎨⎩x=32y=2{2x−3=0y−2=0⇒{x=32y=2
b/ |3x - 4| + |x - y| = 0
Vì: {|3x−4|≥0∀x|x−y|≥0∀x;y{|3x−4|≥0∀x|x−y|≥0∀x;y
=> {3x−4=0x−y=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=43x=y=43{3x−4=0x−y=0⇔{x=43x=y=43
Vậy x = y = 4/3
c/ |2x+y−1|+|2y−3|=0|2x+y−1|+|2y−3|=0
Vì: {|2x+y−1|≥0∀x;y|2y−3|≥0∀y{|2x+y−1|≥0∀x;y|2y−3|≥0∀y
=> {2x+y−1=02y−3=0⇔⎧⎨⎩2x−1=−yy=32{2x+y−1=02y−3=0⇔{2x−1=−yy=32
⇔⎧⎪ ⎪⎨⎪ ⎪⎩2x−1=−32y=32⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=−14y=32⇔{2x−1=−32y=32⇔{x=−14y=32
Vậy..........
d/ |x+y−5|+|2x−y+8|=0|x+y−5|+|2x−y+8|=0
Vì: {|x+y−5|≥0|2x−y+8|≥0{|x+y−5|≥0|2x−y+8|≥0∀x;y
=> {x+y−5=02x−y+8=0{x+y−5=02x−y+8=0⇔{x+y=52x−y=−8⇔{x+y=52x−y=−8
⇔{x=5−y2(5−y)−y=−8⇔{x=5−y2(5−y)−y=−8
⇔{x=5−y10−2y−y=−8⇔{x=5−y10−2y−y=−8
⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6
Vậy x = -1; y = 6
CHÚC BẠN HỌC TỐT
1 , sai đề
2/ xy-x-y+1=0
x(y-1)-(y-1)=0
(y-1)(x-1)=0
->y-1=o hoặc x-1=0
y-1=0 y=1
x-1=0 x=1
vậy x=y=1
3,
\(\left|2x-y\right|+\left|y+1\right|=0\)
Ta có :
\(\hept{\begin{cases}\left|2x-y\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\)( với mọi x,y )
\(\Rightarrow\left|2x-y\right|+\left|y+1\right|\ge0\)( với mọi x,y )
\(\Rightarrow\hept{\begin{cases}y+1=0\Rightarrow y=-1\\2x-y=0\Rightarrow2x-\left(-1\right)=0\Rightarrow2x+2=0\Rightarrow x=-1\end{cases}}\)
@Linnn`s ựa ^^ Trình bày sai thì đừng làm :>>
Vì \(\hept{\begin{cases}\left|2x-y\right|≥0∀x,y\\\left|y-1\right|≥0∀y\end{cases}}\Rightarrow\left|2x-y\right|+\left|y-1\right|≥0∀x,y\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)