Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(y+2\right)-5y-10-5=0\Leftrightarrow x\left(y+2\right)-5\left(y+2\right)-5=0\Leftrightarrow\left(y+2\right)\left(x-5\right)=5\)
vì x,y nguyên => y+2 và x-5 lần lượt thuộc các cặp ước (1;5); (-1;-5); (5;1);(-5;-1)
y+2 | 1 | -1 | 5 | -5 |
y | -1 | -3 | 3 | -7 |
x-5 | 5 | -5 | 1 | -1 |
x | 10 | 0 | 6 | 4 |
=> vậy....
b) \(x+2xy-y-2=4\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=4\Leftrightarrow\left(y+2\right)\left(x-1\right)=4\)
đến đây làm tương tự câu trên nha
xy+x+y=30
<=> x(y+1)+y+1=31
<=> (x+1)(y+1)=31
=> x+1 ; y+1 thuộc Ư(31)={1,31}
Ta có bảng
x+1 | 1 | 31 |
y+1 | 31 | 1 |
x | 0 | 30 |
y | 30 | 0 |
Vậy ta có 2 cặp x,y thõa mãn : x,y=(0,30);(30,0)
b) xy+2x+5y=7
=> x(y+2)+5y+10=17
=> x(y+2)+5(y+2)=17
=> (x+5)(y+2)=17
=>x+5;y+2 thuộc Ư(17)={1,17}
Ta có bảng :
x+5 | 1 | 17 |
y+2 | 17 | 1 |
x | -4 | 12 |
y | 15 | -1 |
Vậy ko có cặp x,y nào thõa mãn với điều kiện x,y thuộc N
c) (x+5)(y-3)=15
=>x+5;y-3 thuộc Ư(15)={1,3,5,15}
Ta có bảng :
x+5 | 1 | 3 | 5 | 15 |
y-3 | 15 | 5 | 3 | 1 |
x | -4 | -2 | 0 | 10 |
y | 18 | 8 | 6 | 4 |
loại | loại |
Vậy ta có 2 cặp x,y thõa mãn (0,6);(10,4)
d) (2x-1)(y+2)=24
=> 2x-1;y+2 thuộc Ư(24)={1,2,3,4,6,8,12,24}
Ta có bảng :
2x-1 | 1 | 2 | 3 | 4 | 6 | 8 | 12 | 24 |
y+2 | 24 | 12 | 8 | 6 | 4 | 3 | 2 | 1 |
x | 1 | 1/2 | 2 | 3/2 | 7/2 | 9/2 | 13/2 | 25/2 |
y | 22 | 10 | 6 | 4 | 2 | 1 | 0 | -1 |
Vậy ta có các cặp x,y thõa mãn : (1,22);(2,6)
\(xy+x+y=30\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=31\)
\(\left(y+1\right)\left(x+1\right)=31=1\cdot31=31\cdot1=-1\cdot-31=-31-1\)
Thế vào là xong!
2x+xy-5y=15
=>x(2+y)-5y=15
=>x(2+y)-5y-10=5
=>x(2+y)-5(y+2)=5
=>(x-5)(2+y)=5
xảy ra các trường hợp:
sau đó tự làm tiếp nha
\(2x+xy-5y=15\)
\(\Leftrightarrow x\left(2+y\right)-5y-10=5\)
\(\Leftrightarrow x\left(2+y\right)-\left(5y+10\right)=5\)
\(\Leftrightarrow x\left(2+y\right)-5\left(2+y\right)=5\)
\(\Leftrightarrow\left(x-5\right)\left(2+y\right)=5=-1.\left(-5\right)=-5.\left(-1\right)=1.5=5.1\)
Ta có bảng :
\(x-5\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(2+y\) | \(-1\) | \(-5\) | \(5\) | \(1\) |
\(x\) | \(0\) | \(4\) | \(6\) | \(10\) |
\(y\) | \(-3\) | \(-7\) | \(3\) | \(-2\) |
Vậy \(x,y\in\left\{\left(0,-3\right);\left(4,-7\right);\left(6,3\right);\left(10,-2\right)\right\}\)
Ta có: xy-2x+5y=12
=> x(y-2)+5(y-2)=12-10
=> (y-2)(x+5)=2
Do x,y thuộc Z nên y-2 và x+5 thuộc Ư(2). Ta có bảng
x+5 | -2 | -1 | 1 | 2 |
x | -7 | -6 | -4 | -3 |
y-2 | -1 | -2 | 2 | 1 |
y | 1 | 0 | 4 | 3 |
Vậy (x;y) cần tìm (-7;1);(-6;0);(-4;4);(-3;3)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
x = 7,5 nha