Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x - 5)2000 + (3y + 4)2002
ta có: (2x - 5)2000 \(\ge\) 0 ; (3y + 4)2002 \(\ge\) 0
=> (2x - 5)2000 + (3y + 4)2002 \(\ge\) 0
Dấu "=" xảy ra khi 2x - 5 = 0 và 3y + 4 = 0
=> 2x = 5 và 3y = -4
=> x = 2,5 và y = \(\frac{-4}{3}\)
Vì mũ của số trên là 100 và 200, đều là số chẵn
Không số nào trong số trên là số âm
Tổng là số vô âm
Tổng của chúng bằng 0
Các hiệu: (3x - 5) ; Các tổng: (2y + 1)
\(\Rightarrow3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
\(\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=-0,5\)
Vậy: \(x=\frac{5}{3};y=-0,5\)
a) 8\(\sqrt{x}\) = \(x^2\) ( x lon hon hoac bang 0)
\(\left(8\sqrt{x}\right)^2\) = \(\left(x^2\right)^2\)
64x=\(x^4\)
\(x^4\)_ 64x = 0
x (\(x^3\) - 64) = 0
suy ra\(\orbr{\begin{cases}x=0\\x^3-64=0\end{cases}}\) suy ra \(\orbr{\begin{cases}x=0\\x^3=64\end{cases}}\) suy ran \(\orbr{\begin{cases}x=0\\x^3=4^3\end{cases}}\) suy ra \(\orbr{\begin{cases}x=0\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vay x= 0; x=4
b) \(\sqrt{3x-2}\) = x (x lon hon hoac bang \(\frac{2}{3}\) )
\(\left(\sqrt{3x-2}\right)^2\) = \(x^2\)
3x - 2=\(x^2\)
\(x^2-3x+2=0\)
\(^{x^2}-1x-2x+2=0\)
\(\left(x^2-1x\right)-\left(2x-2\right)=0\)
\(x\left(x-1\right)-2\left(x-1\right)=0\)
(x-1)(x-2)=0
suy ra \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\) suy ra \(\orbr{\begin{cases}x=1\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)
vay \(x=1;x=2\)
Ta có: \(\left(2x-8\right)^{2000}+\left(3y+4\right)^{2022}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-8=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\3y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\) (1)
có : \(\left(2x-5\right)^{2000}\ge0\forall x\)
\(\left(3y+4\right)^{2002}\ge0\forall x\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)