K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

I love you

a)\(\left(2x^2+4x^2\right)+\left[\left(-5xy\right)+xy\right]+\left(3y^2-2y^2\right)=6x^2-4xy+y^2\)

b)\(2x^2-5xy+3y^2+4x^2+xy-2y^2+2x^2+4xy-5y^2\)

=\(\left(2x^2+4x^2+2x^2\right)+\left(-5xy+xy+4xy\right)+\left(3y^2-2y^2-5y^2\right)\)

=\(8x^2-4y^2\)

28 tháng 6 2016

a)2x=3y                                                 5y=7z

=>\(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\)                 =>\(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\)

=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

=>\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}\)\(=\frac{30}{-15}=-2\)

\(\frac{x}{21}=-2=>x=-2.21=-42\)

\(\frac{y}{14}=-2=>y=-2.14=-28\)

\(\frac{z}{10}=-2=>z=-2.10=-20\)

28 tháng 6 2016

b) tương tự nha

30 tháng 12 2015

Vì \(\left(x+2y-4\right)^2\ge0\) với mọi x,y

\(\left(2x-3y-1\right)^2\ge0\) với mọi x,y

=>\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)

=>\(\int^{x+2y-4=0}_{2x-3y-1=0}<=>\int^{x+2y=4}_{2x-3y=1}<=>\int^{x=2}_{y=1}\)

 Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn.

30 tháng 12 2015

uh mk sắp làm ra rồi chờ chút nhé

6 tháng 4 2017

x4+2x2+1=(x2+1)2

p(x)=0<=>(x2+1)2=0

<=>x2+1=0

mà x2+1>0 mọi x

vậy p(x) vô nghiệm

17 tháng 4 2017

Cho đa thức P(x) = 0

Ta có: \(P\left(x\right)=x^4+2x^2-1=0\) 

\(\Rightarrow P\left(x\right)=x^4+2x^2=-1\)

Mà \(x^4+2x^2\ge0\);  \(-1< 0\)

\(\Rightarrow P\left(x\right)=x^4+2x^2=-1\)(vô lí)

Vậy \(P\left(x\right)\) không có nghiệm

30 tháng 5 2020

Ta có  M = x+ x2y - 2x2 - xy - y+3y + x + 2017

               = x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019

thay x + y - 2 = 0 vào M ta có :  M = x2.0 - y.0 + 0 + 2019

                                                      = 2019

13 tháng 6 2020

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)

Thay \(x+y-2=0\)vào đa thức ta được:

\(M=0.\left(x^2-y+1\right)+2019=2019\)

30 tháng 4 2017

x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0

x2 + 2x2y2 + 2y2 - x2y2 - 2x2 - 2 = 0

x2y2 + 2y2 - x2 - 2 = 0

y2.(x2 + 2) - (x2 + 2) = 0

(y2 - 1)(x2 + 2) = 0

Ta có : x2 + 2 \(\ge\) 0

Nên  \(\orbr{\begin{cases}y^2-1=0\\x^2+2=0\end{cases}\Rightarrow\orbr{\begin{cases}y=\left(1;-1\right)\\x\in R\end{cases}}}\)