\(-2x(-3x+2)-(x+2)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

\(-2x\left(-3x+2\right)-\left(x+2\right)^2\)

\(=6x^2-4x-\left(x^2+4x+4\right)\)

\(=6x^2-4x-x^2-4x-4\)

\(=5x^2-8x-4\)

27 tháng 10 2020

-2x(-3x + 2) - (x + 2)2

= 6x2 - 4x - x2 - 4x - 4

= 5x2 - 8x - 4

= 5x2 - 10x + 2x - 4

= 5x(x - 2) + 2(x - 2)

= (5x + 2)(x - 2)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

1)

ĐK: \(x,y\neq 0\); \(x+y\neq 0\)

\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)

\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)

2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)

\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)

\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)

\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)

4) ĐK: \(x\neq \frac{\pm 1}{3}\)

\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)

\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)

\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)

5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)

\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)

\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{3}{(x+1)^2}\)

a) Ta có: \(2x^4+3x^3-9x^2-3x+2\)

\(=2x^4-2x^3-2x^2+5x^3-5x^2-5x-2x^2+2x+2\)

\(=2x^2\left(x^2-x-1\right)+5x\left(x^2-x-1\right)-2\left(x^2-x-1\right)\)

\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)

27 tháng 9 2020

Cảm ơn bạn!

29 tháng 12 2015

Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!

Tick cho mình nhé!

29 tháng 12 2015

dài thế

olm-logo.png

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32

a) Ta có: \(\left(2x+1\right)^2-\left(2x-1\right)=2\)

\(4x^2+4x+1-2x+1-2=0\)

\(\Leftrightarrow4x^2-2x=0\)

\(\Leftrightarrow2x\left(2x-1\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)

10 tháng 7 2018

a. \(2.\left(5x-8\right)-3.\left(4x-5\right)=4.\left(3x-4\right)+11\Leftrightarrow10x-16-12x+15=12x-16+11\\ \)

\(\Leftrightarrow-2x-1=12x-5\Leftrightarrow14x-4=0\Leftrightarrow x=\frac{2}{7}\)

10 tháng 7 2018

\(a,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow10x-12x-12x=-16+11+16-15\)

\(\Leftrightarrow-14x=-4\)

\(\Leftrightarrow x=\frac{-4}{-14}=\frac{2}{7}\)

\(A=\frac{2x^2-5x+2}{x^2-5x+6}=\frac{2x^2-4x-x+2}{x^2-2x-3x+6}=\frac{\left(2x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{2x-1}{x-3}\)

\(B=\frac{2x^5+3x^4-2x-3}{2x^3+3x^2+2x+3}=\frac{x^4\left(2x+3\right)-\left(2x+3\right)}{x^2\left(2x+3\right)+\left(2x+3\right)}=\frac{\left(x^4-1\right)\left(2x-3\right)}{\left(x^2+1\right)\left(2x-3\right)}=\frac{x^4-1}{x^2+1}=\frac{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}{x^2+1}=x^2-1\)

27 tháng 6 2018

\(x^2+6x+9=\left(x+3\right)^2\)

--

\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

--

\(x^3+12x^2+48x+64=\left(x+4\right)^3\)

28 tháng 6 2018

1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}\)

\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3+3^3-54-x^3\)

\(=27-54=-27\)

3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)

\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)

\(=-5x^2-2xy\)

4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)

\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)

\(=2\)

26 tháng 1 2017

a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)

\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)

\(\Leftrightarrow\frac{1+3x}{2+x}=1\)

\(\Leftrightarrow1+3x=2+x\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)

\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)

\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)

\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)

\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)

\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)

\(\Leftrightarrow-12x^2+60x-36=0\)

\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)

\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)

\(x_2=\frac{5-\sqrt{13}}{6}\)

d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)

\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)

(dấu bằng thứ nhất của câu d là dấu cộng à???)

26 tháng 1 2017

ukm