K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

\(4x^2-12x+9-4x^2+15=0\)

\(-12x+24=0\)

\(-12\left(x-2\right)=0\)

\(\Rightarrow x-2=0\)

\(x=2\)

bấm máy tính là ra bn

2 nhé

hok tốt

nhớ t.i.c.k

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

9 tháng 8 2020

a.\(\left(4x-1\right)-\left(4x+1\right).\left(x-2\right)=12\)

\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)-12=0\)

\(\Leftrightarrow4x-1-4x^2+7x+2-12=0\)

\(\Leftrightarrow-4x^2+11x-11=0\)

\(\Rightarrow4x^2-11x+11=0\)

\(\Leftrightarrow\left(2x\right)^2-2.2x.\frac{11}{4}+\frac{11^2}{4^2}-\frac{11^2}{4^2}+11=0\)

\(\Leftrightarrow\left(2x-\frac{11}{4}\right)^2+\frac{55}{16}=0\)( VÔ LÝ )

VẬY KHÔNG CÓ GIÁ TRỊ NÀO CỦA x THỎA MÃN PT ĐÃ CHO

b. \(\left(2x-3\right).\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2-4x-3-4x^2+8x-4-15=0\)

\(\Leftrightarrow4x-22=0\)\

\(\Leftrightarrow x=\frac{11}{2}\)

VẬY PT CÓ NGHIỆM x= 11/2

9 tháng 8 2020

a) \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)

\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)=12\)

\(\Leftrightarrow4x-1-4x^2+7x+2=12\)

\(\Leftrightarrow4x^2-11x+11=0\)( Pt vô nghiệm )

b) \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)

\(\Leftrightarrow\left(4x^2-4x-3\right)-\left(4x^2-8x+4\right)=15\)

\(\Leftrightarrow4x=22\)

\(\Leftrightarrow x=\frac{11}{2}\)

20 tháng 7 2018

Tìm x, biết:

1) 2x ( x - 5)  - x ( 2x - 4 ) = 15

<=> 2x2 - 10x - 2x2 + 4x - 15 = 0

<=> -6x - 15 = 0

<=> -6x = 15

<=> x = -15/6

2)  ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6

<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0

<=> -4x = -16

<=> x = 4

3)  4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x

<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0

<=> x + 4 = 0

<=> x = -4

4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5

<=> 2x+ x + 6x + 3 - 2x2 - 4x + 5 = 0

<=> 3x + 8 = 0

<=> 3x = -8

<=> x = -8/3

5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0

<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0

.......

6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)

<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0

<=> -2x + 40 = 0

<=> -2x = -40

<=> x = 20

Còn lại tương tự ....

19 tháng 7 2018

1)2x^2-10x-2x^2+14x=15

4x=15

x=15/4

26 tháng 7 2018

bài 1

a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)

Dấu "=" xảy ra khi x=1

Vậy Amin=-1 khi x=1

b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)

Dấu "=" xảy ra khi x=1

Vậy Bmin=-2 khi x=1

bài 2:

a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)

Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

dấu "=" xảy ra khi x=-1/2

Vậy Amax=6/5 khi x=-1/2

b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu '=" xảy ra khi x=-2/3

Vậy Bmax=15/41 khi x=-2/3

17 tháng 6 2017

\(\left(15-2x\right)\left(4x+1\right)-\left(13-4x\right)\left(2x-3\right)-\left(x-1\right)\left(x+2\right)+x^2=52\)

\(60x+15-8x^2-2x-26x+39+8x^2-12x-x^2-2x+x+2+x^2=52\)

\(19x+56=52\)

\(19x=-4\)

\(x=-\dfrac{4}{19}\)

9 tháng 8 2020

(4x - 1) - (4x + 1)(x - 2) = 12

=> 4x - 1 - 4x- 7x - 2 = 12

=> (4x - 7x) + (- 1 - 2) - 4x2 = 12

=> -3x - 3 - 4x2 = 12

=> -3x - 4x2 = 15

=> không tồn tại x 

b. (2x - 3)(2x + 1) - (2x - 2)(2x - 2) = 15

=> 2x(2x + 1) - 3(2x + 1) - 2x(2x - 2) + 2(2x - 2) = 15

=> 4x2 + 2x - 6x - 3 - 4x2 + 4x - 4x - 4 = 15

=> (4x2 - 4x2) + (2x - 6x + 4x - 4x) + (-3 - 4) = 15

=> -4x - 7 = 15

=> -4x = 22

=> x = \(-\frac{11}{2}\)

9 tháng 8 2020

a, \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)

\(\Leftrightarrow4x-1-4x^2+8x-x+2=12\)

\(\Leftrightarrow11x+1-4x^2=12\)

\(\Leftrightarrow11x-11-4x^2=0\)( vô nghiệm )

b, \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)

\(\Leftrightarrow4x^2+2x-6x-3-4x^2+8x-4=15\)

\(\Leftrightarrow4x-7=15\Leftrightarrow4x=22\Leftrightarrow x=\frac{11}{2}\)

21 tháng 3 2020

a) ( x + 2 )( 3 - 4x ) = x2 + 4x + 4

<=> ( x + 2 )( 3 - 4x ) = ( x + 2 )2

<=> 3 - 4x = x + 2

<=> -4x - x = 2 - 3

<=> -5x = -1

<=> x = \(\frac{1}{5}\)

b) x(2x - 7) - 4x + 14 = 0

<=> x(2x - 7) = 4x - 14

<=> x(2x - 7) = 2(2x - 7)

<=> x = 2

c) 3x - 15 = 2x(x - 5)

<=> 3(x - 5) = 2x(x - 5)

<=> 3 = 2x

<=> x = \(\frac{3}{2}\)

d) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)

<=> 3x - 2 = 5x - 8

<=> 3x - 5x = -8 + 2

<=> -2x = -6

<=> x = 3

18 tháng 2 2020

a,x^2+2x=15

<=>x^2+2x-15=0

<=>x^2+5x-3x-15=0

<=>x(x+5)-3(x+5)=0 <=>(x-3)(x+5)=0

<=>\(\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

Vậy x=3,x=-5

mik lm tạm câu a nhé

19 tháng 2 2020

a) \(x^2+2x=15\)\(\Leftrightarrow x^2+2x-15=0\)

\(\Leftrightarrow\left(x^2+3x\right)-\left(5x+15\right)=0\)\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=5\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-3;5\right\}\)

b) \(2x^3-2x^2=4x\)\(\Leftrightarrow2x^3-2x^2-4x=0\)

\(\Leftrightarrow2x\left(x^2-x-2\right)=0\)\(\Leftrightarrow2x\left[\left(x^2-2x\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow2x\left[x\left(x-2\right)+\left(x-2\right)\right]=0\)\(\Leftrightarrow2x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x=0\)hoặc \(x+1=0\)hoặc \(x-2=0\)

\(\Leftrightarrow x=0\)hoặc \(=-1\)hoặc \(x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;0;2\right\}\)