K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0

áp dụng vào từng câu

a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I  ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I

A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6

Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3

b) LÀm tương tự MinB=18

Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2

17 tháng 8 2017

2x-3=x+1/2

17 tháng 8 2017

a,2x-3=x+1/2                       b,4x-(x+1/2)=2x+(1/2-5)                           c,2/3-1/3(x-2/3)-1/2(2x+1)=5

2x-x =1/2+3                           4x-x-1/2=2x+1/2-5                             d,(x+1/2).(x-3/4)=0

x=7/2                                4x-x-2x  =1/2-5+1/2                                 \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)

                                            x=-4

e,(2x-1)(3x+1/5)=0

\(\orbr{\begin{cases}2x-1=0\\3x+\frac{1}{5}=0\end{cases}}\orbr{\begin{cases}2x=1\\3x=\frac{1}{5}\end{cases}}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{15}\end{cases}}\)

f, 4x2-2x=0

Các câu mk chưa làm thì bạn cứ chờ để mk suy nghĩ.

16 tháng 4 2023

\(A\left(x\right)+B\left(x\right)=2x^3+4x^2-x-1+2x^3-2x^2-x-3\\ =\left(2x^3+2x^3\right)+\left(4x^2-2x^2\right)+\left(-x-x\right)+\left(-1-3\right)\\ =4x^3+2x^2-2x-4\ne P\left(x\right)\)

=> Chọn B. Sai

5 tháng 7 2018

mấy bài bạn cho quá hack não đi , vs lại ko phù hợp vs trí khôn có hạn của mk nên leuleu muahahaleuleu

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)