K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6

Lời giải:

Đặt $2x-1=a$

\(a^6=a^8\\ \Leftrightarrow a^8-a^6=0\\ \Leftrightarrow a^6(a^2-1)=0\\ \Leftrightarrow a^6=0\text{ hoặc } a^2-1=0\\ \Leftrightarrow a=0 \text{ hoặc } a=\pm 1\\ \Leftrightarrow 2x-1=0 \text{ hoặc } 2x-1=1 \text{ hoặc } 2x-1=-1\)

$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$ hoặc $x=0$

23 tháng 6

Nhận xét: Mũ chẵn và chung cơ số

⇒ Cơ số ϵ { -1; 1; 0}

Ta lập bảng:

2x - 1 -1 1 0
x 0 1 X

⇒ x ϵ {0; 1}

8 tháng 8 2016

(2x-5)2+2(2x-5)(3x+1)+(3x+1)2

=(2x-5)[(2x-5)+2(3x+1)]+(3x+1)2

=(2x-5)[8x-3]+(3x+1)2

=16x2-46x+15+9x2+6x+1

=25x2-40x+16

=(5x)2-2*5x*4+42

=(5x-4)2

8 tháng 8 2016

phần nâng cao chính là một hằng đẳng thức hoàn chỉnh (a+b)2. trong đó 2x-5 là a và 3x+1 là b

26 tháng 10 2017

quá chuẩn luôn !!!!!!!!

NHỚ L.I.K.E cho mk nha

26 tháng 10 2017

 a) (x+2)(x^2-2x+4)-x(x^2+2)=15 
<=> x^3 + 8 - x^3 - 2x = 15 
<=> -2x = 7 
<=> x = -7/2 

b) (x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)=28 
<=> x^3 + 9x² + 27x + 27 - x(9x² + 6x + 1) + 8x^3 + 1 = 28 
<=> x^3 + 9x² + 27x + 27 - 9x^3 - 6x² - x + 8x^3 + 1 - 28 = 0 
<=> 3x² + 26x = 0 
<=> x(3x + 26) = 0 
Vậy x = 0 và x = -26/3 

c) (x^2-1)^3-(x^4+x^2+1)(x^2-1)=0 
<=> (x² - 1)[(x² -1)² - x^4 - x² - 1] = 0 
<=> (x-1)(x+1)(x^4 - 2x² + 1 - x^4 - x² - 1 ) = 0 
<=> -(x-1)(x+1)3x² = 0 
Vậy nghiệm là x = 1 ; -1 ; 0

21 tháng 8 2021

`a)`

`A=(x+1)(2x-1)`

`=2x^{2}+x-1`

`=2(x^{2}+(1)/(2)x-(1)/(2))`

`=2(x^{2}+(1)/(2)x+(1)/(16)-(9)/(16))`

`=2(x+(1)/(4))^{2}-(9)/(8)>= -9/8` với mọi `x`

Dấu `=` xảy ra khi :

`x+(1)/(4)=0<=>x=-1/4`

Vậy `min=-9/8<=>x=-1/4`

``

`b)`

`(4x+1)(2x-5)`

`=8x^{2}-18x-5`

`=8(x^{2}-(9)/(4)x-(5)/(8))`

`=8(x^{2}-(9)/(4)x+(81)/(64)-(121)/(64))`

`=8(x-(9)/(8))^{2}-(121)/(8)>= -(121)/(8)` với mọi `x`

Dấu `=` xảy ra khi :

`x-(9)/(8)=0<=>x=9/8`

Vậy `min=-121/8<=>x=9/8`

NV
21 tháng 8 2021

\(A=2x^2+x-1=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(A_{min}=-\dfrac{9}{8}\) khi \(x=-\dfrac{1}{4}\)

\(B=8x^2-18x-5=8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)

\(B_{min}=-\dfrac{121}{8}\) khi \(x=\dfrac{9}{8}\)

18 tháng 4 2023

\(\dfrac{2x-6}{x+1}\ge0\)

`<=> 2x-6 >= 0`

`<=> 2x >=6`

`<=> x>=3`

Vật bpt đã cho có tập nghiệm \(S=\left\{x|x\ge3\right\}\)

=>2x-6>=0 hoặc x+1<0

=>x>=3 hoặc x<-1

28 tháng 1 2023

`a)(2x-1)^2-0,25=0`

`<=>(2x-1-0,5)(2x-1+0,5)=0`

`<=>(2x-1,5)(2x-0,5)=0`

`<=>[(x=0,75)(x=0,25):}`

`b)x^2+9=6x`

`<=>(x-3)^2=0`

`<=>x-3=0`

`<=>x=3`

`c)(x^2-4)-3x-6=0`

`<=>(x-2)(x+2)-3(x+2)=0`

`<=>(x+2)(x-2-3)=0`

`<=>(x+2)(x-5)=0`

`<=>[(x=-2),(x=5):}`

a: =>(2x-1-0,5)(2x-1+0,5)=0

=>(2x-1,5)(2x-0,5)=0

=>x=0,25 hoặc x=0,75

b: =>x^2-6x+9=0

=>(x-3)^2=0

=>x-3=0

=>x=3

c: =>(x-2)(x+2)-3(x+2)=0

=>(x+2)(x-5)=0

=>x=5 hoặc x=-2

10 tháng 12 2021

a: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)

29 tháng 10 2021

\(=\dfrac{x^3+x^2+x^2+x+x+1}{x^2+x}\)

\(=x+1+\dfrac{1}{x}\)

19 tháng 3 2020

=[x(x-2)/2(x2+4)-2x2/(4+x2)(2-x)][x(x-2)(x+1)/x3]

={[x(x-2)(2-x)-4x2 ]/2(2-x)(4+x2)} .[x(x-2)(x+1)/x3 ]

=[-x(x2+4)/2(2-x)(4+x2)].[x(x-2)(x+1)/x3 ]

=-x.x(x-2)(x+1)/2(2-x)x3

=(x+1)/2x

9 tháng 12 2021

\(\left(2x^3+x^2+10x+30\right):\left(2x+1\right)\)

\(=2x^3:\left(2x+1\right)+x^2:\left(2x+1\right)+10x:\left(2x+1\right)+30:\left(2x+1\right)\)

\(=2x^3:2x+2x^3:1+x^2:2x+x^2:1+10x:2x+10x:1+30:2x+30:1\)

\(=x^2+2x^3+\dfrac{1}{2}x+x^2+5+10x+15x+30\)

\(=2x^3+2x^2+\dfrac{51}{2}x+35\)

9 tháng 12 2021

=x^2+5 và dư 25 nha

 

16 tháng 7 2023

Phân tích đa thức:

x^4 + 2x^3 - x^2 - 2x + 1

= (x^4 + 2x^3) - (x^2 + 2x) + 1

= x^3(x + 2) - x(x + 2) + 1

= (x^3 - x)(x + 2) + 1

= x(x^2 - 1)(x + 2) + 1

= x(x - 1)(x + 1)(x + 2) + 1

Vậy phương trình đã cho có các nghiệm là x = -2, x = -1, x = 0 và x = 1.