K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

\(\left(2x-1\right)^2+2.\left(2x-1\right).\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(2x-1+x+1\right)^2\)

\(=\left(3x\right)^2\)

\(=9x^2\)

27 tháng 11 2021

lên google

a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)

\(-16-8x=18-6x\)

\(-16-8x-18+6x=0\)

\(-34-2x=0\)

\(2x=-34\Leftrightarrow x=-17\)

b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0 

\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)

\(x^2+3x+x^2-x-2=2x^2+2x\)

\(2x^2+2x-2=2x^2+2x\)

\(2x^2+2x-2x^2-2x-2=0\)

\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

a)

$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$

$=2(2x+1)$

b)

$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$

c)

$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$

$=-9x+4$

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

d)

$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$

$=6x^2+12x+9$

e)

$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$

$=x^3-x^2-3x+11$

f)

$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$

$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$

3 tháng 9 2016

trời đất, học hằng đẳng thức chưa, chưa hc thì thôi, học rồi thì áp dụng vs bài này như ăn cháo thôi chứ có j đâu phải hỏi

Bài 2: Tìm x

a) Ta có: (x-2)(x-1)=x(2x+1)+2

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy: S={0;-4}

b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0x=0\)

Vậy: S={x|\(x\in R\)}

c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x+20=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\frac{10}{3}\)

Vậy: \(S=\left\{-\frac{10}{3}\right\}\)

e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)

\(\Leftrightarrow2x=27-10=17\)

hay \(x=\frac{17}{2}\)

Vậy: \(S=\left\{\frac{17}{2}\right\}\)

27 tháng 7 2017

a)(3x-1)2+2(3x-1)(2x+1)2(2x+1)=48x^4+56x^3+21x^2-12x-1 cái này tra google

b)(x2+1)(x-3)-(x-3)(x2+3x+9)=(x2+1)(x-3)-(x-3)(x+3)2=(x-3)[(x2+1)-(x+3)]

c)(2x+3)2+(2x+5)2-2(2x+3)(2x+5)=(2x+3)2+(2x+5)2-(2x+3)(2x+5)-(2x+3)(2x+5)=(2x+3)(2x+3-2x+5)+(2x+5)(2x+5-2x+3)

                                                =8(2x+3)+8(2x+5)=8(2x+3+2x+5)

                                                =8(4x+8)

d)(x-3)(x+3)-(x-3)=(x-3)(x+3)-(x-3)(x-3)=(x-3)(x+3-x-3)=0

e)(2x+1)2+2(4x2-1)+(2x-1)=(2x+1)2+2[(2x)-1]+(2x-1)=(2x+1)(2x+1+2x-1)+(2x-1)(2x+1+2x-1)=4x(2x+1)+4x(2x-1)

                                                                                 =4x(2x+1+2x-1)=16x2

f)(x2-1)(x+2)-(x-2)(x2+2x+4)= (x2-1)(x+2)-(x-2)(x+2)=(x2-1)(x+2)-(x2-22)(x+2)=(x+2)(x2-1-x2-22) mình đoán câu f khai triển ra thế này nhưng kq không giống nhau nên chắc bạn phải tự làm rồi