Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x-y)^3 -(x+y)^3
= x^3 -3x^2 y +3xy^2 -y^3 -(x^3 +3x^2 y +3xy^2 +y^3)
= -6x^2 y -2 y^3
b, = x(x^2 -1) -(x^3 +1)
= x^3 -x -x^3 -1
= -x -1
c, = x^2 -10x +25 +x^2 + 10x+ 25 -2x^2
= 50
d, = x^3 + 3x^2 y + 3xy^2 + y^3 -3x^2 y -3xy^2
= x^3 + y^3
Bài 1: Tìm giá trị nhỏ nhất của biểu thức sau
a) P= x2-6x+5
b) Q= 4x2+4x-1
c) M= x2-x
d) N=x2+x+4
e) H= x2+3x+5
f) F= x2-5x
Bài 2 Tính giá trị của biểu thức sau
a) x3+9x2+27x+27 tại x= -103
b)x3-45x2+75x tại x =25
c) x2+8x tại x= -14
Bài 3 Tìm x, biết
a) (x+3)2-x(3x+1)2+(2x+1)(4x2-2x+1-3x2) =54
b) (x-3)2 -(x-3)(x2+3x+9)+6(x+1)2+3x2 = -33
c) 6(x+1)2-2(x+1)3+2(x-1)(x2+x+1)=1
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Bài 7: Phân tích đa thức thành nhân tử
a) Ta có: \(a^2-b^2-2a+2b\)
\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2\right)\)
b) Ta có: \(3x-3y-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
c) Ta có: \(16-x^2+4xy-4y^2\)
\(=16-\left(x^2-4xy+4y^2\right)\)
\(=16-\left(x-2y\right)^2\)
\(=\left(4-x+2y\right)\left(4+x-2y\right)\)
d) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(5-x-4y\right)\left(3x+2y+3\right)\)
e) Ta có: \(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
f) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)
\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)
\(=2x\cdot\left[x^2+6x+9-\left(x^2-9\right)+x^2-6x+9\right]\)
\(=2x\cdot\left(2x^2+18-x^2+9\right)\)
\(=2x\cdot\left(x^2+27\right)\)
g) Ta có: \(9x^2-3xy+y-6x+1\)
\(=\left(9x^2-6x+1\right)-y\left(3x-1\right)\)
\(=\left(3x-1\right)^2-y\left(3x-1\right)\)
\(=\left(3x-1\right)\left(3x-1-y\right)\)
h) Ta có: \(x^3-4x^2+12x-27\)
\(=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
Bài 1:
a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)
b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]
= 2xy.(x-y-1).(x+y+1)
c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2
= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)
Bài 2:
a) (x+2).(x^2-2x+4) - (x^3+2x) = 0
x^3 + 8 - x^3 - 2x = 0
8 - 2x = 0
x = 4
b) x^2 - 2x - 8 = 0
x^2 +2x - 4x - 8 = 0
x.(x+2) - 4.(x+2) = 0
(x+2).(x-4) = 0
...
bn tự làm tiếp nha
Câu a phần I sai. đề là :
a) A = -3x(x - 5 ) + 3(x2 - 4x ) - 3x + 10
khẳng định đúng là C
(x+2)3= (2+x)3 vì trong ngoặc phép cộng có tính chất giao hoán
Nó chọn rồi mà . Thấy chữ C in đậm đó là đáp án